Saturator Efficiency and Uncertainty of NMIJ Two-Pressure Two-Temperature Humidity Generator

2008 ◽  
Vol 29 (5) ◽  
pp. 1615-1622 ◽  
Author(s):  
H. Kitano ◽  
T. Niwa ◽  
N. Ochi ◽  
C. Takahashi
2001 ◽  
Author(s):  
Dariusz Buchczik ◽  
Witold Ilewicz

2018 ◽  
Author(s):  
Meng An ◽  
Qichen Song ◽  
Xiaoxiang Yu ◽  
Han Meng ◽  
Dengke Ma ◽  
...  

1992 ◽  
Author(s):  
Lou A. Stephenson ◽  
Mark D. Quigley ◽  
Laurie A. Blanchard ◽  
Deborah A. Toyota ◽  
Margaret A. Kolka

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Miao Hui ◽  
...  

AbstractAggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.


Sign in / Sign up

Export Citation Format

Share Document