scholarly journals Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Miao Hui ◽  
...  

AbstractAggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.

2020 ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Hui Miao ◽  
...  

<p>Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient RTP in bulk by restricting molecular motions. Here we show that by utilizing triphenylamine (TPA) as an electronic donor which connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Both the TPA AIE-gen and the <i>sp</i><sup>3</sup>-linkage can suppress aggregation-caused quenching. Consequently, dual phosphorescence bands emitting from localized donor and acceptor triplet states, respectively, could be recorded at lowered temperatures; at room temperature, only a single RTP band corresponding to the lowest triplet state is present, presumably due to thermally assisted electronic coupling between the two states. The reported molecular construct serves as an “intermediary case” between a fully conjugated donor-acceptor system and a do-nor/acceptor binary mix, which may provide important clues on the design and control of molecular systems with complex excited-state dynamics.<br></p>


2020 ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Hui Miao ◽  
...  

<p>Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient RTP in bulk by restricting molecular motions. Here we show that by utilizing triphenylamine (TPA) as an electronic donor which connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Both the TPA AIE-gen and the <i>sp</i><sup>3</sup>-linkage can suppress aggregation-caused quenching. Consequently, dual phosphorescence bands emitting from localized donor and acceptor triplet states, respectively, could be recorded at lowered temperatures; at room temperature, only a single RTP band corresponding to the lowest triplet state is present, presumably due to thermally assisted electronic coupling between the two states. The reported molecular construct serves as an “intermediary case” between a fully conjugated donor-acceptor system and a do-nor/acceptor binary mix, which may provide important clues on the design and control of molecular systems with complex excited-state dynamics.<br></p>


2020 ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Hui Miao ◽  
...  

<p>Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient RTP in bulk by restricting molecular motions. Here we show that by utilizing triphenylamine (TPA) as an electronic donor which connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Both the TPA AIE-gen and the <i>sp</i><sup>3</sup>-linkage can suppress aggregation-caused quenching. Consequently, dual phosphorescence bands emitting from localized donor and acceptor triplet states, respectively, could be recorded at lowered temperatures; at room temperature, only a single RTP band corresponding to the lowest triplet state is present, presumably due to thermally assisted electronic coupling between the two states. The reported molecular construct serves as an “intermediary case” between a fully conjugated donor-acceptor system and a do-nor/acceptor binary mix, which may provide important clues on the design and control of molecular systems with complex excited-state dynamics.<br></p>


2021 ◽  
Author(s):  
Takumi Hosono ◽  
Nicolas Oliveira Decarli ◽  
Paola Zimmermann Crocomo ◽  
Tsuyoshi Goya ◽  
Leonardo Evaristo de Sousa ◽  
...  

Exploring design principle for switching thermally activated dealyed fluorescecne (TADF) and room temperature phosphorescence (RTP) is a fundamentally imporant research in developing triplet-mediated photofunctional organic materials. Herein systematic studies on the regioisomeric and substituents effects in a twisted donor–acceptor–donor (D–A–D) scaffold (A = dibenzo[a,j]phenazine; D = dihydrophenazasiline) on the fate of the excited state have been performed. The study revealed that the regiosiomerism clearly affects the emission behavior of the D–A–D compounds. Distinct difference in TADF, dual TADF & RTP, and dual RTP were observed, depending on the host used. Furthermore, OLED organic light-emitting diodes (OLEDs) fabricated with the developed emitters achieved high external quantum yields for RTP-based OLEDS up to 7.4%.


2019 ◽  
Vol 7 (40) ◽  
pp. 12601-12609 ◽  
Author(s):  
Rokas Skaisgiris ◽  
Tomas Serevičius ◽  
Karolis Kazlauskas ◽  
Yan Geng ◽  
Chihaya Adachi ◽  
...  

Minimization of electronic coupling between donor and acceptor units in σ-spaced TADF compounds leads to emergence of unexpected emission mechanisms, deteriorating TADF properties.


2016 ◽  
Vol 858 ◽  
pp. 326-330
Author(s):  
Shi Yi Zhuo ◽  
Xi Liu ◽  
Pao Gao ◽  
Wei Huang ◽  
Cheng Feng Yan ◽  
...  

Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystal in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.


1999 ◽  
Vol 13 (04) ◽  
pp. 419-426 ◽  
Author(s):  
M. RAJENDRAN ◽  
M. GHANASHYAM KRISHNA ◽  
A. K. BHATTACHARYA

Temperature programmed oxygen evolution (TPD) and electrical conductivity of a new series of fluorite compositions in La 2-x Pr x O 3+y(1≤x≤2) system have been investigated. For x=2, oxygen evolution occurs at three distinct steps, whereas for x≤1.8, oxygen evolution occurs only in two steps and for x=1 it becomes negligible. A decrease in the Pr-content in the fluorite compositions lowers the TPD peak intensity. The samples resorb oxygen on annealing at 650° C in flowing oxygen and cooling the samples to room temperature revealing the reversible oxygen uptake and release feature. The electrical conductivity increases as a function of Pr-content in this series. For x≤1.8, the temperature dependent conductivity shows breaks at two temperature regions and the magnitude of the break is pronounced in Pr-rich compositions. Also, the activation energy decreases as the Pr-content is increased in this series. The present results suggest that the fluorite compositions in this system might have potential as catalysts to store/transport/release oxygen reversibly.


2017 ◽  
Vol 196 ◽  
pp. 305-316 ◽  
Author(s):  
Pengfei Duan ◽  
Deepak Asthana ◽  
Takuya Nakashima ◽  
Tsuyoshi Kawai ◽  
Nobuhiro Yanai ◽  
...  

Aggregation-induced photon upconversion (iPUC) based on a triplet–triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor–acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor–acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.


2021 ◽  
Vol 118 (11) ◽  
pp. e2026462118
Author(s):  
Rafał Orłowski ◽  
John A. Clark ◽  
James B. Derr ◽  
Eli M. Espinoza ◽  
Maximilian F. Mayther ◽  
...  

Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala)4. Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala)4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor–acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a “scorpion-shaped” molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH…O=C–NH…O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor–acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins.


Sign in / Sign up

Export Citation Format

Share Document