Thermodynamics and Statistics of Gödel Black Hole with Logarithmic Correction

2013 ◽  
Vol 52 (10) ◽  
pp. 3560-3563 ◽  
Author(s):  
A. Pourdarvish ◽  
J. Sadeghi ◽  
H. Farahani ◽  
B. Pourhassan
2014 ◽  
Vol 53 (9) ◽  
pp. 3101-3108 ◽  
Author(s):  
A. Pourdarvish ◽  
B. Pourhassan ◽  
M. Mirebrahimi
Keyword(s):  

2004 ◽  
Vol 13 (05) ◽  
pp. 885-898
Author(s):  
LI XIANG

Bekenstein argues that the horizon area of a black hole has a constant distance spectrum. We investigate the effects of such a discrete spectrum on the thermodynamics of a Schwarzchild black hole (SBH) and a Schwarzchild–de Sitter black hole (SdBH), in terms of the time-energy uncertainty relation and Stefan–Boltzman law. For the massive SBH, a negative and logarithmic correction to the Bekenstein–Hawking entropy is obtained, as well as other authors by using other methods. As to the minimal hole near the Planck scale, its entropy is no longer proportional to the horizon area, but is of order of the mass of the hole. This is similar to an excited stringy state. The vanishing heat capacity of such a minimal black hole implies that it may be a remnant as the ground state of the evaporating hole. The properties of a SdBH are similar to the SBH, except for an additional term of square area associated with the cosmological constant. In order to maintain the validity of the Bekenstein–Hawking formula, the cosmological constant is strongly limited by the size of the biggest black hole in the universe. A relation associated with the cosmological constant, Planck area and the Stefan–Boltzman constant is obtained. The cosmological constant is not only related to the vacuum energy, but is also related to the thermodynamics.


2001 ◽  
Vol 18 (15) ◽  
pp. 2877-2885 ◽  
Author(s):  
T R Govindarajan ◽  
R K Kaul ◽  
V Suneeta

2010 ◽  
Vol 331 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Shi-Xiong Song ◽  
Jiang Huang ◽  
Ji-Rong Ren
Keyword(s):  

2013 ◽  
Vol 28 (07) ◽  
pp. 1350009
Author(s):  
LICHUN ZHANG ◽  
HUAIFAN LI ◽  
REN ZHAO ◽  
RONGGEN CAI

In a dielectric black hole background, photons will be radiated via Hawking evaporation mechanism. In this paper, we calculate the entanglement entropy associated with a static dielectric black hole by employing 't Hooft's brick-wall model. It is found that the lowest energy of radiated particles is coordinate dependent. The resulted entanglement entropy is composed of three parts: a parameter independent leading constant term [Formula: see text], a logarithmic correction term and some series terms. The convergency of the series terms is also discussed.


2015 ◽  
Vol 30 (22) ◽  
pp. 1550144 ◽  
Author(s):  
Mir Faizal ◽  
Mohammed M. Khalil

Based on the universality of the entropy-area relation of a black hole, and the fact that the generalized uncertainty principle (GUP) adds a logarithmic correction term to the entropy in accordance with most approaches to quantum gravity, we argue that the GUP-corrected entropy-area relation is universal for all black objects. This correction to the entropy produces corrections to the thermodynamics. We explicitly calculate these corrections for three types of black holes: Reissner–Nordström, Kerr and charged AdS black holes, in addition to spinning black rings. In all cases, we find that they produce a remnant. Even though the GUP-corrected entropy-area relation produces the logarithmic term in the series expansion, we need to use the full form of the GUP-corrected entropy-area relation to get remnants for these black holes.


2008 ◽  
Vol 17 (01) ◽  
pp. 1-23 ◽  
Author(s):  
A. N. ST. J. FARLEY ◽  
P. D. D'EATH

This paper presents a non-string-theoretic calculation of the microcanonical entropy of relic integer-spin Hawking radiation, at fixed total energy E, from an evanescent, neutral, non-rotating four-dimensional black hole. The only conserved macroscopic quantity is the total energy E which, for a black hole that evaporates completely, is the total energy of the relic radiation. Through a boundary-value approach, in which data for massless, integer-spin perturbations are set on initial and final space-like hypersurfaces, the statistical-mechanics problem becomes, in effect, a one-dimensional problem, with the "volume" of the system determined by the real part of the time separation at spatial infinity — the variable conjugate to the total energy. We count the number of field configurations on the final space-like hypersurface that have total energy E, assuming that initial perturbations are weak. We find that the density of states resembles the well-known Cardy formula. The Bekenstein–Hawking entropy is recovered if the real part of the asymptotic time separation is of the order of the semi-classical black-hole lifetime. We thereby obtain a statistical interpretation of black-hole entropy. Corrections to the microcanonical entropy are computed, and we find agreement with other approaches in terms of a logarithmic correction to the black-hole area law, which is universal (independent of black-hole parameters). This result depends crucially upon the discreteness of the energy levels. We discuss the similarities of our approach with the transition from the black-hole to the fundamental-string regime in the final stages of black-hole evaporation. In addition, we find that the squared coupling, g2, which regulates the transition from a black hole to a highly-excited string state, and vice versa, can be related to the angle, δ, in the complex-time plane, through which we continue analytically the time separation at spatial infinity. Thus, in this scenario, the strong-coupling regime corresponds to a Euclidean black hole, while the physical limit of a Lorentzian space–time (the limit as δ → 0+) corresponds to the weak-coupling regime. This resembles the transition of a black hole to a highly-excited string-like state, which subsequently decays into massless particles, thereby avoiding the naked singularity.


Sign in / Sign up

Export Citation Format

Share Document