Semi-Quantum Key Distribution with Single Photons in both Polarization and Spatial-Mode Degrees of Freedom

2020 ◽  
Vol 59 (9) ◽  
pp. 2807-2815
Author(s):  
Tian-Yu Ye ◽  
Hong-Kun Li ◽  
Jia-Li Hu
Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 376
Author(s):  
Natalia Herrera Valencia ◽  
Vatshal Srivastav ◽  
Matej Pivoluska ◽  
Marcus Huber ◽  
Nicolai Friis ◽  
...  

Photons offer the potential to carry large amounts of information in their spectral, spatial, and polarisation degrees of freedom. While state-of-the-art classical communication systems routinely aim to maximize this information-carrying capacity via wavelength and spatial-mode division multiplexing, quantum systems based on multi-mode entanglement usually suffer from low state quality, long measurement times, and limited encoding capacity. At the same time, entanglement certification methods often rely on assumptions that compromise security. Here we show the certification of photonic high-dimensional entanglement in the transverse position-momentum degree-of-freedom with a record quality, measurement speed, and entanglement dimensionality, without making any assumptions about the state or channels. Using a tailored macro-pixel basis, precise spatial-mode measurements, and a modified entanglement witness, we demonstrate state fidelities of up to 94.4% in a 19-dimensional state-space, entanglement in up to 55 local dimensions, and an entanglement-of-formation of up to 4 ebits. Furthermore, our measurement times show an improvement of more than two orders of magnitude over previous state-of-the-art demonstrations. Our results pave the way for noise-robust quantum networks that saturate the information-carrying capacity of single photons.


Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 24
Author(s):  
Noah Cowper ◽  
Harry Shaw ◽  
David Thayer

The ability to send information securely is a vital aspect of today’s society, and with the developments in quantum computing, new ways to communicate have to be researched. We explored a novel application of quantum key distribution (QKD) and synchronized chaos which was utilized to mask a transmitted message. This communication scheme is not hampered by the ability to send single photons and consequently is not vulnerable to number splitting attacks like other QKD schemes that rely on single photon emission. This was shown by an eavesdropper gaining a maximum amount of information on the key during the first setup and listening to the key reconciliation to gain more information. We proved that there is a maximum amount of information an eavesdropper can gain during the communication, and this is insufficient to decode the message.


2020 ◽  
Vol 18 (06) ◽  
pp. 2050031
Author(s):  
Ali Mehri-Toonabi ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this work, we introduce a high-dimensional polarization-phase (PoP)-based quantum key distribution protocol, briefly named PoP[Formula: see text], where [Formula: see text] is the dimension of a hybrid quantum state including polarization and phase degrees of freedom of the same photon, and [Formula: see text] is the number of mutually unbiased bases. We present a detailed description of the PoP[Formula: see text] protocol as a special case, and evaluate its security against various individual and coherent eavesdropping strategies, and in each case, we compare it with the BB84 and the two-dimensional (TD)-PoP protocols. In all the strategies, the error threshold and the effective transmission rate of the PoP[Formula: see text] protocol are far greater than the other two protocols. Unlike most high-dimensional protocols, the simplicity of producing and detecting the qudits and the use of conventional components (such as traditional single-photon sources and quantum channels) are among the features of the PoP[Formula: see text] protocol.


2018 ◽  
pp. 22-30 ◽  
Author(s):  
Tamas Bisztray ◽  
Laszlo Bacsardi

In this paper we are looking at the milestones that were achieved in free−space quantum key distribution as well as the current state of this technology. First a brief overview introduces the technical prerequisites that will help to better understand the rest of the paper. After looking into the first successful demonstrations of short range free space QKD both indoor and outdoor, we are examining the longer range terrestrial QKD experiments. In the next step we look at some experiments that were aiming to take free space QKD to the next level by placing the sender or the receiver on moving vehicles. After the terrestrial demonstrations we focus on satellite based experiments. Finally, we explore hyper-dimensional QKD, utilising energy−time, polarization and orbital angular momentum (OAM) degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document