Effect of color information on the diagnostic performance of glaucoma in deep learning using few fundus images

2020 ◽  
Vol 40 (11) ◽  
pp. 3013-3022
Author(s):  
Masakazu Hirota ◽  
Atsushi Mizota ◽  
Tatsuya Mimura ◽  
Takao Hayashi ◽  
Junichi Kotoku ◽  
...  
2020 ◽  
Author(s):  
Jinseok Lee

BACKGROUND The coronavirus disease (COVID-19) has explosively spread worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) can be used as a relevant screening tool owing to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely busy fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE We aimed to quickly develop an AI technique to diagnose COVID-19 pneumonia and differentiate it from non-COVID pneumonia and non-pneumonia diseases on CT. METHODS A simple 2D deep learning framework, named fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning, using one of the four state-of-art pre-trained deep learning models (VGG16, ResNet50, InceptionV3, or Xception) as a backbone. For training and testing of FCONet, we collected 3,993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and non-pneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training and a testing set at a ratio of 8:2. For the test dataset, the diagnostic performance to diagnose COVID-19 pneumonia was compared among the four pre-trained FCONet models. In addition, we tested the FCONet models on an additional external testing dataset extracted from the embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS Of the four pre-trained models of FCONet, the ResNet50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100%, and accuracy 99.87%) and outperformed the other three pre-trained models in testing dataset. In additional external test dataset using low-quality CT images, the detection accuracy of the ResNet50 model was the highest (96.97%), followed by Xception, InceptionV3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS The FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing dataset, the ResNet50-based FCONet might be the best model, as it outperformed other FCONet models based on VGG16, Xception, and InceptionV3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mu Sook Lee ◽  
Yong Soo Kim ◽  
Minki Kim ◽  
Muhammad Usman ◽  
Shi Sub Byon ◽  
...  

AbstractWe examined the feasibility of explainable computer-aided detection of cardiomegaly in routine clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) models for lung and heart segmentation. The training dataset included PA CXRs from two public datasets and in-house PA CXRs. Two fully automated segmentation-based methods using state-of-the-art DL models for lung and heart segmentation were developed. The diagnostic performance was assessed and the reliability of the automatic cardiothoracic ratio (CTR) calculation was determined using the mean absolute error and paired t-test. The effects of thoracic pathological conditions on performance were assessed using subgroup analysis. One thousand PA CXRs of 1000 patients (480 men, 520 women; mean age 63 ± 23 years) were included. The CTR values derived from the DL models and diagnostic performance exhibited excellent agreement with reference standards for the whole test dataset. Performance of segmentation-based methods differed based on thoracic conditions. When tested using CXRs with lesions obscuring heart borders, the performance was lower than that for other thoracic pathological findings. Thus, segmentation-based methods using DL could detect cardiomegaly; however, the feasibility of computer-aided detection of cardiomegaly without human intervention was limited.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marion R. Munk ◽  
Thomas Kurmann ◽  
Pablo Márquez-Neila ◽  
Martin S. Zinkernagel ◽  
Sebastian Wolf ◽  
...  

AbstractIn this paper we analyse the performance of machine learning methods in predicting patient information such as age or sex solely from retinal imaging modalities in a heterogeneous clinical population. Our dataset consists of N = 135,667 fundus images and N = 85,536 volumetric OCT scans. Deep learning models were trained to predict the patient’s age and sex from fundus images, OCT cross sections and OCT volumes. For sex prediction, a ROC AUC of 0.80 was achieved for fundus images, 0.84 for OCT cross sections and 0.90 for OCT volumes. Age prediction mean absolute errors of 6.328 years for fundus, 5.625 years for OCT cross sections and 4.541 for OCT volumes were observed. We assess the performance of OCT scans containing different biomarkers and note a peak performance of AUC = 0.88 for OCT cross sections and 0.95 for volumes when there is no pathology on scans. Performance drops in case of drusen, fibrovascular pigment epitheliuum detachment and geographic atrophy present. We conclude that deep learning based methods are capable of classifying the patient’s sex and age from color fundus photography and OCT for a broad spectrum of patients irrespective of underlying disease or image quality. Non-random sex prediction using fundus images seems only possible if the eye fovea and optic disc are visible.


Author(s):  
Nikos Tsiknakis ◽  
Dimitris Theodoropoulos ◽  
Georgios Manikis ◽  
Emmanouil Ktistakis ◽  
Ourania Boutsora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document