Image-Based Indoor Topological Navigation with Collision Avoidance for Resource-Constrained Mobile Robots

2021 ◽  
Vol 102 (3) ◽  
Author(s):  
Suman Raj Bista ◽  
Belinda Ward ◽  
Peter Corke
Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 954
Author(s):  
Abhijeet Ravankar ◽  
Ankit A. Ravankar ◽  
Arpit Rawankar ◽  
Yohei Hoshino

In recent years, autonomous robots have extensively been used to automate several vineyard tasks. Autonomous navigation is an indispensable component of such field robots. Autonomous and safe navigation has been well studied in indoor environments and many algorithms have been proposed. However, unlike structured indoor environments, vineyards pose special challenges for robot navigation. Particularly, safe robot navigation is crucial to avoid damaging the grapes. In this regard, we propose an algorithm that enables autonomous and safe robot navigation in vineyards. The proposed algorithm relies on data from a Lidar sensor and does not require a GPS. In addition, the proposed algorithm can avoid dynamic obstacles in the vineyard while smoothing the robot’s trajectories. The curvature of the trajectories can be controlled, keeping a safe distance from both the crop and the dynamic obstacles. We have tested the algorithm in both a simulation and with robots in an actual vineyard. The results show that the robot can safely navigate the lanes of the vineyard and smoothly avoid dynamic obstacles such as moving people without abruptly stopping or executing sharp turns. The algorithm performs in real-time and can easily be integrated into robots deployed in vineyards.


Robotica ◽  
2014 ◽  
Vol 33 (2) ◽  
pp. 332-347 ◽  
Author(s):  
Riccardo Falconi ◽  
Lorenzo Sabattini ◽  
Cristian Secchi ◽  
Cesare Fantuzzi ◽  
Claudio Melchiorri

SUMMARYIn this paper, a consensus-based control strategy is presented to gather formation for a group of differential-wheeled robots. The formation shape and the avoidance of collisions between robots are obtained by exploiting the properties of weighted graphs. Since mobile robots are supposed to move in unknown environments, the presented approach to multi-robot coordination has been extended in order to include obstacle avoidance. The effectiveness of the proposed control strategy has been demonstrated by means of analytical proofs. Moreover, results of simulations and experiments on real robots are provided for validation purposes.


Sign in / Sign up

Export Citation Format

Share Document