DSC and TEM analysis of lattice defects governing the mechanical properties of an ECAP-processed magnesium alloy

2007 ◽  
Vol 42 (5) ◽  
pp. 1477-1482 ◽  
Author(s):  
B. Mingler ◽  
O. B. Kulyasova ◽  
R. K. Islamgaliev ◽  
G. Korb ◽  
H. P. Karnthaler ◽  
...  
2020 ◽  
Vol 57 (3) ◽  
pp. 249-259
Author(s):  
Baifen Liu ◽  
Mohammad Mirjalili ◽  
Peiman Valipour ◽  
Sajad Porzal ◽  
shirin Nourbakhsh

This research deals with the mechanical properties, microstructure, and interrelations of triple nanocomposite based on PET/EPDM/Nanoclay. These properties were examined in different percentages of PET/EPDM blend with compatibilizer (Styrene-Ethylene/Butylene-Styrene)-G-(Maleic anhydrate) (SEBS-g-MAH). Results showed that the addition of 15% SEBS-g-MAH improved the toughness and impact strength of this nanocomposite. SEM micrographs indicated the most stable fuzzy microstructure in a 50/50 mixture of scattered phases of EPDM/SEBS-g-MAH. The effects of percentages of 1, 3, 5, 7 nanoclay Cloisite 30B (C30B) on the improvement of the properties were evaluated. With the addition of nano clay, the toughness and impact strength was reduced. Thermal destruction of nanoclay in processing temperature led to the decreasing dispersion of clay plates in the matrix and a reduction in the distances of nano clay plates in the composite compared to pure nano clay. XRD and TEM analysis was used to demonstrate the results. By adding 1% of nanoclay to the optimal sample, maximum stiffness, and Impact strength, among other nanocomposites, was achieved.


2005 ◽  
Vol 15 (1) ◽  
pp. 25-30
Author(s):  
Yong-Gil Kim ◽  
Hak-Kyu Choi ◽  
Min-Cheol Kang ◽  
Hae-Yong Jeong ◽  
Cha-Hurn Bae

2021 ◽  
pp. 160089
Author(s):  
Jiří Kubásek ◽  
Peter Minárik ◽  
Klára Hosová ◽  
Stanislav Šašek ◽  
Michal Knapek ◽  
...  

Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2016 ◽  
Vol 677 ◽  
pp. 125-132 ◽  
Author(s):  
Yuchun Yuan ◽  
Aibin Ma ◽  
Xiaofan Gou ◽  
Jinghua Jiang ◽  
Godfred Arhin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document