Negative Poisson’s ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study

2016 ◽  
Vol 51 (14) ◽  
pp. 7029-7037 ◽  
Author(s):  
Dong Li ◽  
Liang Dong ◽  
Jianhua Yin ◽  
Roderic S. Lakes
2020 ◽  
Vol 975 ◽  
pp. 159-164
Author(s):  
Saeid Mohsenizadeh ◽  
Zaini Ahmad ◽  
Amran Alias

Filling the thin-walled tubes with a foam core is a typical method to enhance the energy absorption performance and stabilize their crushing responses under impact loading. Recently, auxetic foam material with negative Poisson’s ratio has gained remarkable popularity as an effective candidate to enhance the energy absorption capability of structures. In this paper, polyurethane auxetic foam is suggested as a foam core with the negative Poisson’s ratio of-0.31. Numerical simulation was performed to quantify the crush characteristics of auxetic foam-filled square aluminum tubes for variations in initial width of tube under quasi-static axial loading using the nonlinear finite element (FE) code LS-Dyna. Based on the numerical results, the influence of tube width was quantified in terms of energy absorption (EA), specific energy absorption (SEA), initial peak force (Pmax) and crush force efficiency (CFE). It is found that the progressive collapse and deformation modes of auxetic foam-filled tube (AFFT) is pronouncedly affected by varying the tube width. Furthermore, the SEA of AFFT is remarkably sensitive to the tube width variations, yet show low sensitivity to the EA of AFFT. The present study provides new design information on the crush response and energy absorption performance of auxetic foam-filled square tube with varying tube width.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Mariam Mir ◽  
Murtaza Najabat Ali ◽  
Javaria Sami ◽  
Umar Ansari

One of the important mechanical properties of materials is Poisson’s ratio, which is positive for most of the materials. However, certain materials exhibit “auxetic” properties; that is, they have a negative Poisson’s ratio. Thus auxetic and non-auxetic materials exhibit different deformation mechanisms. A specific microscopic structure in the auxetic materials is important for maintaining a negative Poisson’s ratio. Based on their distinct nature auxetic materials execute certain unique properties in contrast to other materials, which are reviewed in this paper. Thus auxetic materials have important applications in the biomedical field which are also a part of this review article. Many auxetic materials have been discovered, fabricated, and synthesized which differ on the basis of structure, scale and deformation mechanism. The different types of auxetic materials such as auxetic cellular solids, microscopic auxetic polymers, molecular auxetic materials, and auxetic composites have been reviewed comprehensively in this paper. Modeling of auxetic structures is of considerable importance and needs appropriate stress strain configurations; thus different aspects of auxetic modeling have also been reviewed. Packing parameters and relative densities are of prime importance in this regard. This review would thus help the researchers in determining and deciding the various aspects of auxetic nature for their products.


2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


Sign in / Sign up

Export Citation Format

Share Document