Numerical Study on Axial Crushing of Auxetic Foam-Filled Square Tube

2020 ◽  
Vol 975 ◽  
pp. 159-164
Author(s):  
Saeid Mohsenizadeh ◽  
Zaini Ahmad ◽  
Amran Alias

Filling the thin-walled tubes with a foam core is a typical method to enhance the energy absorption performance and stabilize their crushing responses under impact loading. Recently, auxetic foam material with negative Poisson’s ratio has gained remarkable popularity as an effective candidate to enhance the energy absorption capability of structures. In this paper, polyurethane auxetic foam is suggested as a foam core with the negative Poisson’s ratio of-0.31. Numerical simulation was performed to quantify the crush characteristics of auxetic foam-filled square aluminum tubes for variations in initial width of tube under quasi-static axial loading using the nonlinear finite element (FE) code LS-Dyna. Based on the numerical results, the influence of tube width was quantified in terms of energy absorption (EA), specific energy absorption (SEA), initial peak force (Pmax) and crush force efficiency (CFE). It is found that the progressive collapse and deformation modes of auxetic foam-filled tube (AFFT) is pronouncedly affected by varying the tube width. Furthermore, the SEA of AFFT is remarkably sensitive to the tube width variations, yet show low sensitivity to the EA of AFFT. The present study provides new design information on the crush response and energy absorption performance of auxetic foam-filled square tube with varying tube width.

2011 ◽  
Vol 148-149 ◽  
pp. 992-995 ◽  
Author(s):  
Shu Yang ◽  
Chang Qi ◽  
Dong Ming Guo ◽  
Dong Wang

In the present paper, we have investigated a negative Poisson’s ratio structure with regular re-entrant cell shape to study its structural response under crush by rigid wall. Firstly, we created the geometry of cellular material in HYPERMESH. The developed geometrical model is imported into LS-DYNA. Then we use commercially available nonlinear explicit finite element code LS-DYNA to simulate the NPR material under uniformly distributed load. The deformation modes and energy absorption characteristics of NPR material were analyzed. Numerical results indicate that this NPR material have good ability of energy absorption.


Author(s):  
ChunYan Wang ◽  
SongChun Zou ◽  
WanZhong Zhao

The crash box can absorb energy from the beam as much as possible, so as to reduce the collision damage to the front part of the car body and protect the safety of passengers. This work proposes a novel crash box filled with a three-dimensional negative Poisson’s ratio (NPR) inner core based on an inner hexagonal cellular structure. In order to optimize and improve the crash box’s energy absorption performance, the multi-objective optimization model of the NPR crash box is established, which combines the optimal Latin hypercube design method and response surface methodology. Then, the microstructure parameters are further optimized by the multi-objective particle swarm optimization algorithm to obtain an excellent energy absorption effect. The simulation results show that the proposed NPR crash box can generate smooth and controllable deformation to absorb the total energy, and it can further enhance the crashworthiness through the designed optimization algorithm.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1353
Author(s):  
Chunxia Guo ◽  
Dong Zhao ◽  
Zhanli Liu ◽  
Qian Ding ◽  
Haoqiang Gao ◽  
...  

The synthesized understanding of the mechanical properties of negative Poisson’s ratio (NPR) convex–concave honeycomb tubes (CCHTs) under quasi-static and dynamic compression loads is of great significance for their multifunctional applications in mechanical, aerospace, aircraft, and biomedical fields. In this paper, the quasi-static and dynamic compression tests of three kinds of 3D-printed NPR convex–concave honeycomb tubes are carried out. The sinusoidal honeycomb wall with equal mass is used to replace the cell wall structure of the conventional square honeycomb tube (CSHT). The influence of geometric morphology on the elastic modulus, peak force, energy absorption, and damage mode of the tube was discussed. The experimental results show that the NPR, peak force, failure mode, and energy absorption of CCHTs can be adjusted by changing the geometric topology of the sinusoidal element. Through the reasonable design of NPR, compared with the equal mass CSHTs, CCHTs could have the comprehensive advantages of relatively high stiffness and strength, enhanced energy absorption, and damage resistance. The results of this paper are expected to be meaningful for the optimization design of tubular structures widely used in mechanical, aerospace, vehicle, biomedical engineering, etc.


Sign in / Sign up

Export Citation Format

Share Document