Coarsening behavior of precipitate Al3(Sc,Zr) in supersaturated Al-Sc-Zr alloy via melt spinning and extrusion

Author(s):  
Yang Yang ◽  
Joseph J. Licavoli ◽  
Stephen A. Hackney ◽  
Paul G. Sanders
2007 ◽  
Vol 26-28 ◽  
pp. 87-90
Author(s):  
Taek Kyun Jung ◽  
Mok Soon Kim ◽  
W.Y. Kim ◽  
Hyouk Chon Kwon ◽  
S. Yi

The microstructures and mechanical properties of the bulk Al-Fe-(Mo, V, Zr) alloy produced by melt spinning process and subsequent hot extrusion at 693K in the extrusion ratio of 25 to 1 were investigated. TEM observation revealed an equiaxed grain structure with the average grain size of 200 nm for the extruded bulk alloy. Extremely fine dispersoids based on Al-Fe phases, Al-Fe-(Mo, V) phases and Al-Zr phases were observed to be distributed uniformly within grains and at grain boundaries. The size distribution of the binary Al-Fe and the Al-Fe-(Mo, V) phases were ranged from 20 nm to 50 nm, whereas the Al-Zr phase was less than 10 nm. The very high tensile strength of about 800MPa was achieved at room temperature for the extruded bulk alloy.


2020 ◽  
Vol 826 ◽  
pp. 154185 ◽  
Author(s):  
Yang Yang ◽  
Joseph J. Licavoli ◽  
Paul G. Sanders
Keyword(s):  

Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.


Author(s):  
Kenneth S. Vecchio ◽  
David B. Williams

Since the discovery in 1984 by Shechtman et al. of crystals which display apparent five-fold symmetry, extensive effort has been given to establishing a theoretical basis for the existence of icosahedral phases (eg.2.). Several other investigations have been centered on explaining these observations based on twinning of cubic crystals (eg.3.). Recently, the existence of a stable, equilibrium phase T2Al6 Li3Cu) possessing an icosahedral structure has been reported in the Al-Li-Cu system(4-6).In the present study an Al-2.6wt.%Li-l.5wt.%Cu-0.lwt.%Zr alloy was heat treated at 300°C for 100hrs. to produce large T2 precipitates. Convergent Beam Electron Diffraction (CBED) patterns were obtained from two-fold, three-fold, and apparent five-fold axes of T2 particles. Figure 1 shows the five-fold symmetric zero layer CBED pattern obtained from T2 particles.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
H.-J. Cantow ◽  
M. Kunz ◽  
M. Möller

In transmission electron microscopy the natural contrast of polymers is very low. Thus the contrast has to be enhanced by staining with heavy metals. The resolution is limited by the size of the staining particles and by the fact that electrons with different energy are focused in different image planes due to the chromatic aberration of the magnetic lenses. The integration of an electron energy loss spectrometer into the optical coloumn of a transmission electron microscope offers the possibility to use monoenergetic electrons and to select electrons with a certain energy for imaging. Thus contrast and resolution are enhanced. By imaging only electrons with an element specific energy loss the element distribution in the sample can be obtained. In addition, elastic bright field images and diffraction patterns yield excellent resolution. Some applications of the method on multicomponent polymer materials are discussed.Bulk polymer samples were prepared by ultramicrotoming at room temperature or well below the glass transition temperature. Very thin films for the direct observation of the structure in semicrystalline polymers were obtained by melt-spinning. Specimens were examined with a ZEISS CEM 902 operated at 80 kV.


Author(s):  
D.M. Jiang ◽  
B.D. Hong

Aluminum-lithium alloys have been recently got strong interests especially in the aircraft industry. Compared to conventional high strength aluminum alloys of the 2000 or 7000 series it is anticipated that these alloys offer a 10% increase in the stiffness and a 10% decrease in density, thus making them rather competitive to new up-coming non-metallic materials like carbon fiber reinforced composites.The object of the present paper is to evaluate the inluence of various microstructural features on the monotonic and cyclic deformation and fracture behaviors of Al-Li based alloy. The material used was 8090 alloy. After solution treated and waster quenched, the alloy was underaged (190°Clh), peak-aged (190°C24h) and overaged (150°C4h+230°C16h). The alloy in different aging condition was tensile and fatigue tested, the resultant fractures were observed in SEM. The deformation behavior was studied in TEM.


1987 ◽  
Vol 48 (C3) ◽  
pp. C3-327-C3-334 ◽  
Author(s):  
M. S. MAHMOUD ◽  
H. B. McSHANE ◽  
T. SHEPPARD
Keyword(s):  

1987 ◽  
Vol 48 (C3) ◽  
pp. C3-653-C3-659 ◽  
Author(s):  
M. NIINOMI ◽  
K. DEGAWA ◽  
T. KOBAYASHI

1987 ◽  
Vol 48 (C3) ◽  
pp. C3-209-C3-218 ◽  
Author(s):  
M. J. TAN ◽  
T. SHEPPARD

Sign in / Sign up

Export Citation Format

Share Document