Preparation of in situ TiC@TiN core–shell and Ti2N–Al4C3 nanoparticles and their effects on Al–Zn–Mg–Cu alloy

Author(s):  
Yuhang Xia ◽  
Chunxiang Cui ◽  
Binghao Han ◽  
Hongtao Geng ◽  
Lu Liu
Keyword(s):  
Cu Alloy ◽  
Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


2021 ◽  
Vol 714 (3) ◽  
pp. 032008
Author(s):  
Hongmei Li ◽  
Zhisheng Nong ◽  
Qian Xu ◽  
Qiushi Song ◽  
Ying Chen ◽  
...  

Author(s):  
Zhanyong Zhao ◽  
Lizheng Zhang ◽  
Peikang Bai ◽  
Wenbo Du ◽  
Shaowei Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 310
Author(s):  
Dohyeon Han ◽  
Doohwan Lee

Fine control of morphology and exposed crystal facets of porous γ-Al2O3 is of significant importance in many application areas such as functional nanomaterials and heterogeneous catalysts. Herein, a morphology controlled in situ synthesis of Al@Al2O3 core–shell architecture consisting of an Al metal core and a porous γ-Al2O3 shell is explored based on interfacial hydrothermal reactions of an Al metal substrate in aqueous solutions of inorganic anions. It was found that the morphology and structure of boehmite (γ-AlOOH) nano-crystallites grown at the Al-metal/solution interface exhibit significant dependence on temperature, type of inorganic anions (Cl−, NO3−, and SO42−), and acid–base environment of the synthesis solution. Different extents of the electrostatic interactions between the protonated hydroxyl groups on (010) and (001) facets of γ-AlOOH and the inorganic anions (Cl−, NO3−, SO42−) appear to result in the preferential growth of γ-AlOOH toward specific crystallographic directions due to the selective capping of the facets by adsorption of the anions. It is hypothesized that the unique Al@Al2O3 core–shell architecture with controlled morphology and exposed crystal-facets of the γ-Al2O3 shell can provide significant intrinsic catalytic properties with enhanced heat and mass transport to heterogeneous catalysts for applications in many thermochemical reaction processes. The direct fabrication of γ-Al2O3 nano-crystallites from Al metal substrate with in-situ modulation of their morphologies and structures into 1D, 2D, and 3D nano-architectures explored in this work is unique and can offer significant opportunities over the conventional methods.


Author(s):  
Albert Grau-Carbonell ◽  
Sina Sadighikia ◽  
Tom A. J. Welling ◽  
Relinde J. A. van Dijk-Moes ◽  
Ramakrishna Kotni ◽  
...  

2021 ◽  
Vol 865 ◽  
pp. 158296
Author(s):  
Xiaojuan Lian ◽  
Wei Guo ◽  
Yueli Wu ◽  
Yamei Tian ◽  
Shuang Wang
Keyword(s):  

2021 ◽  
pp. 160504
Author(s):  
Yuhang Xia ◽  
Chunxiang Cui ◽  
Binghao Han ◽  
Hongtao Geng ◽  
Lu Liu
Keyword(s):  
Cu Alloy ◽  

Sign in / Sign up

Export Citation Format

Share Document