The efficacy of polyvinylpyrrolidone (PVP)/CuO nanocomposite as an appropriate room temperature humidity sensing material: fabrication of highly sensitive capacitive resistive type humidity sensor

2020 ◽  
Vol 31 (10) ◽  
pp. 7698-7707
Author(s):  
Hizb Ullah Khan ◽  
Muhammad Tariq ◽  
Mutabar Shah ◽  
Muhammad Tariq Jan ◽  
Mahmood Iqbal ◽  
...  
RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1157-1164
Author(s):  
Parag V. Adhyapak ◽  
Aishwarya M. Kasabe ◽  
Amruta D. Bang ◽  
Jalindar Ambekar ◽  
Sulabha K. Kulkarni

A novel, highly sensitive gold nanowire (AuNW) resistive sensor is reported here for humidity sensing in the relative humidity range of 11% to 92% RH as well as for breath sensing.


2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


FlatChem ◽  
2018 ◽  
Vol 9 ◽  
pp. 21-26 ◽  
Author(s):  
S.G. Leonardi ◽  
W. Wlodarski ◽  
Y. Li ◽  
N. Donato ◽  
Z. Sofer ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20349-20357 ◽  
Author(s):  
Satyendra Singh ◽  
Archana Singh ◽  
Ajendra Singh ◽  
Poonam Tandon

A new direction was explored using nanostructured zinc antimonate as a stable and highly sensitive LPG sensing material.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 521 ◽  
Author(s):  
Yuan ◽  
Qian ◽  
Liu ◽  
Wang ◽  
Yu

Here we report on a miniaturized optical interferometer in one fiber based on two mismatched nodes. The all-fiber structure shows stable performance of temperature and humidity sensing. For temperature sensing in large ranges, from 40 to 100 °C, the sensor has a sensitivity of 0.24 dB/°C, and the adjusted R-squared value of fitting result reaches 0.99461 which shows a reliable sensing result. With carbon nanotubes coating the surface of the fiber, the temperature sensitivity is enhanced from 0.24561 to 1.65282 dB/°C in a small region, and the performance of humidity sensing becomes more linear and applicable. The adjusted R-squared value of the linear fitting line for humidity sensing shows a dramatic increase from 0.71731 to 0.92278 after carbon nanotube coating, and the humidity sensitivity presents 0.02571 nm/%RH.


2017 ◽  
Vol 10 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Chang-Ming Chen ◽  
Jun Xu

A passive evanescent mode half-mode substrate integrated waveguide (HMSIW) resonator loaded with a complementary split ring resonator (CSRR) is designed and fabricated for humidity sensing applications. The use of the CSRR which is etched on the top plane of the HMSIW can significantly reduce the size of the device. Without any sensing material, the sensor which has a compact size of 0.17λg × 0.17λg can provide high humidity sensitivity up to 5.82 MHz/%relative humidity (RH) at high RH region (>84.3%). The results indicate that the proposed structure is a promising candidate for radio and microwave humidity sensing applications.


2011 ◽  
Vol 418-420 ◽  
pp. 684-687 ◽  
Author(s):  
Hong Di Zhang ◽  
Yun Ze Long ◽  
Zhao Jian Li ◽  
Bin Sun ◽  
Chen Hao Sheng

Barium titanate (BTO, BaTiO3) nanofiber was prepared via electrospinning and followed annealing process. The as-spun and calcined BTO nanofibers were characterized by a scanning electron microscope (SEM). After annealing at 800 °C in air for 3 h, polycrystalline BTO nanofibers with 120-200 nm in diameter were successfully obtained. I-V characteristic curves of single BTO nanofiber were measured. The p-type semiconducting fiber shows a room-temperature conductivity of about 0.3 S/cm. In addition, the small humidity hysteresis demonstrates the application prospects of electrospun BTO nanofibers in the fabrication of a high-sensitive humidity sensor.


2007 ◽  
Vol 1032 ◽  
Author(s):  
Seon Oh Hwang ◽  
Chang Hyun Kim ◽  
Yoon Myung ◽  
Seong-Hun Park ◽  
Jeunghee Park ◽  
...  

AbstractVertically-aligned Mn (10%)-doped Fe3O4 (Fe2.7Mn0.3O4) nanowire arrays were produced by the reduction/substitution of pre-grown Fe2O3 nanowires. These nanowires were ferromagnetic with a Verwey temperature of 129 K. X-ray magnetic circular dichroism measurements revealed that the Mn2+ ions preferentially occupy the tetrahedral sites, substituting for the Fe3+ ions. We observed that the Mn substitution decreases the magnetization, but increases the electrical conductivity. We developed highly sensitive gas sensors using these nanowire arrays, operating at room temperature, whose sensitivity showed a correlation with their bond strength of diatomic/triatomic molecules. Based on the fact that the sensitivity was highest toward water vapor, an excellent-performance humidity sensor was fabricated.


2013 ◽  
Vol 319 ◽  
pp. 43-48 ◽  
Author(s):  
Hong Di Zhang ◽  
Chen Hao Sheng ◽  
Bin Sun ◽  
Yun Ze Long

Nanocrystalline and porous barium titanate (BaTiO3) nanofibers with diameter 200-400 nm were synthesized via electrospinning and followed calcinations. The morphology and microstructure of the nanofibers were characterized using field emission scanning electron microscope, X-ray diffractometer and transmission electron microscope, respectively. And the electrical and humidity sensing properties of the nanofibers were also measured. The results reveal that the BaTiO3 nanofibers have a conductivity of about 0.3 S/cm, and show an ultrafast response time (~0.7 s) and a recovery time (~0.4 s) to humidity at room temperature. In addition, the sensing mechanism was also discussed briefly based on its nanocrystalline and porous microstructure of the electrospun material.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3308 ◽  
Author(s):  
Zhihua Wei ◽  
Jie Huang ◽  
Jing Li ◽  
Junshan Li ◽  
Xuyang Liu ◽  
...  

In this study, an ultra-compact humidity sensor based on a double-folded substrate integrated waveguide (SIW) re-entrant cavity was proposed and analyzed. By folding a circular re-entrant cavity twice along its two orthogonally symmetric planes, the designed structure achieved a remarkable size reduction (up to 85.9%) in comparison with a conventional TM010-mode circular SIW cavity. The operating principle of the humidity sensor is based on the resonant method, in other words, it utilizes the resonant properties of the sensor as signatures to detect the humidity condition of the ambient environment. To this end, a mathematical model quantitatively relating the resonant frequency of the sensor and the relative humidity (RH) level was established according to the cavity perturbation theory. The sensing performance of the sensor was experimentally validated in a RH range of 30%–80% by using a humidity chamber. The measured absolute sensitivity of the sensor was calculated to be 135.6 kHz/%RH, and the corresponding normalized sensitivity was 0.00627%/%RH. It was demonstrated that our proposed sensor not only has the merits of compact size and high sensitivity, but also benefits from a high Q-factor and ease of fabrication and integration. These advantages make it an excellent candidate for humidity sensing applications in various fields such as the agricultural, pharmaceutical, and food industries.


Sign in / Sign up

Export Citation Format

Share Document