scholarly journals Correction to: Hydrothermal temperature dependence of CaWO4 nanoparticles: structural, optical, morphology and photocatalytic activity

Author(s):  
F. X. Nobre ◽  
R. Muniz ◽  
E. R. do Nascimento ◽  
R. S. Amorim ◽  
R. S. Silva ◽  
...  
2021 ◽  
Vol 50 (6) ◽  
pp. 1685-1695
Author(s):  
Nurashina Abdul Rahman ◽  
Anita Ramli ◽  
Chong Fai Kait

In the present work, effect of hydrothermal temperature from 120 to 160 °C on TiO2 physicochemical properties as well as its photocatalytic activity towards biodiesel production using waste cooking oil (WCO) was investigated. TiO2was synthesized via hydrothermal method using Titanium butoxide, Ti(OBu)4 as the precursor and nitric acid, HNO3 as the peptizing agent. Next, the synthesized photocatalyst was dried at 60 °C for 24 h and later calcined at 400 °Cfor 2 h. The synthesized TiO2 was characterized using X-ray diffraction (XRD) and Burnauer- Emmet- Teller (BET) to determine their crystallinity and textural properties. Results showed that all synthesized TiO2 have a mixture of anatase and rutile phase and N2 adsorption- desorption isotherm for all catalyst possess Type IV isotherm according to IUPACclassification with hysteresis loop of type H1. Then, all the synthesized catalysts were tested for biodiesel production using esterified waste cooking oil under visible light irradiation for 1 h and 10 min. Percentage of fatty acid methyl ester (FAMEs) present in the synthesized biodiesel was determined using gas chromatography with flame ionization detector (GC-FID). The synthesized catalyst (T24_160) showed a good photocatalytic activity as the percentage of biodiesel yield was higher (3.41%) compared to the other catalyst.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chongjun Wang ◽  
Zaiwang Zhao ◽  
Bin Luo ◽  
Min Fu ◽  
Fan Dong

Various nitrogen-doped hierarchical (BiO)2CO3nanosheets architectures were synthesized by a facile one-step template-free hydrothermal method through controlling the hydrothermal temperature (HT). The as-synthesized samples were characterized by XRD, SEM, FT-IR, XPS, and UV-vis DRS. The photocatalytic activity of the samples was evaluated towards degradation of NO at ppb level in air under visible light (VIL). It was found that HT acted as a crucial factor in determining the morphology of the samples. The rosa chinensis-like, red camellia-like, and lamina-like of nitrogen-doped (BiO)2CO3(N-BOC) micro-/nanostructures can be selectively fabricated under hydrothermal temperatures of 150, 180, and 210°C. The thickness of the nanosheets was in direct proportion to the increasing HT. Nitrogen-doping can extend the light absorption spectra of (BiO)3CO3to visible light region and enhance the VIL photocatalytic activity. Especially, the red camellia-like N-BOC-180 exhibited the highest photocatalytic performance, superior to the well-known VIL-driven photocatalyst C-doped TiO2and N-doped TiO2. The high photocatalytic performance of N-BOC was attributed to the synergetic effects of enhanced visible light absorption, multiple light-reflections between the nanosheets, and accelerated transfer of reactants and product. This research could provide new insights to the development of excellent photocatalyst with efficient performance for pollution control.


2016 ◽  
Vol 680 ◽  
pp. 198-202
Author(s):  
Chao Wang ◽  
Si Qin Zhao ◽  
S. Asuha

In this paper, a series of mesoporous TiO2 photocatalyst were prepared by hydrothermal method using block copolymer P123 as template and Ti (OBu)4 as titanium source. The microstructure and spectroscopy performance of the prepared TiO2 were characterized by means of XRD, SEM, TEM, BET, and BJH analysis, and the photocatalytic activity of mesoporous TiO2 were examined by measuring the photodegradation of methyl orange , then discussed the best prepared conditions of mesoporous TiO2 photocatalyst. The results showed that the products were all anatase mesoporous TiO2 nanopowder, the average particle size is about 7nm and all have the Langmuir type IV pore structure. The best prepared condition: hydrothermal temperature is 160°C, hydrothermal time is 24h, mesoporous TiO2 photocatalyst has the BET surface area of 146m2/g , it’s photocatalytic degradation rate is 97.07% in an hour.


2011 ◽  
Vol 197-198 ◽  
pp. 786-789 ◽  
Author(s):  
Rui Liu ◽  
Wein Duo Yang ◽  
Hui Ju Chueng

TiO2 nanotubes were synthesized using TiO2 powder as raw material from a hydrothermal method. It was observed that the sample prepared at 130°C and calcined at 450°C only anatase formed, but the sample calcined at 800°C, both anatase and rutile formed. The obtained TiO2 nanotubes prepared at a hydrothermal temperature of 130°C and calcined at 450°C have a greater surface area of 356.8m2/g. Moreover, the TiO2 nanotubes demonstrate the photocatalytic degradation of methylene blue solution effectively by exposing the nanotubes in aqueous solution under visible light.


2015 ◽  
Vol 33 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Y.L. Zou ◽  
Y. Li ◽  
Q. Wang ◽  
D.M. An ◽  
X.X. Lian ◽  
...  

AbstractSpongy ZnO microstructures were synthesized via a facile hydrothermal method using zinc nitrate hexahydrate and oxalic acid as raw materials. The as-obtained ZnO were characterized by powder X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and transmission electron spectroscopy (TEM), respectively. The BET surface area and average pore size of the samples were determined by nitrogen adsorption-desorption analysis. Effects of precursor and hydrothermal temperature on the morphology and photocatalytic activity of the products were investigated. SEM and TEM analysis indicated that the as-obtained spongy ZnO microstructures consisted of a large amount of ZnO particles with the average size of about 100 to 150 nm. The photocatalytic activities of the spongy ZnO microstructures were evaluated by photodegradation of methylene blue (MB) under UV light radiation. The results indicated that the ZnO synthesized at 150 °C for 10 h showed the highest photocatalytic activity and the degradation ratio of MB reached 99.5 % for 60 min of UV light irradiation with the light intensity of 10 mW · cm-2.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Nguyen Duc Van ◽  
Ngo Thi Hong Le

The synthesis of silver pyrovanadate, Ag4V2O7, nanoplates with exposed {0 0 1}-facets by a facile, additive-free hydrothermal method was described in this paper. The photocatalytic activity of rhodamine B over Ag4V2O7 samples under solar light irradiation was also evaluated. By using an equimolar mixture of NH4VO3 and AgNO3 with the presence of a suitable amount of ammonia, Ag4V2O7 nanoplates were obtained readily and purely at temperatures from 100 to 140°C for 4 h. In particular, the c-axis orientation growth of Ag4V2O7 nanoplates occurred and increased monotonously with temperatures in the range of over 100 up to 140°C. Further increase in hydrothermal temperature up to 220°C, the Ag4V2O7 phase no longer existed and the β-AgVO3 phase was formed instead. The photocatalytic activity of the optimized Ag4V2O7 sample comprising {0 0 1}-facet-exposed nanoplates with the highest degree of orientation was significantly higher than that of the random-oriented sample. The effects of using ammonia as a complexing agent on the structure, microstructure, texture, exposed facet, and photocatalytic activity of Ag4V2O7 samples were also investigated for the first time.


2016 ◽  
Vol 16 (11) ◽  
pp. 11153-11157 ◽  
Author(s):  
Tae Yang Seo ◽  
Seung Muk Lee ◽  
Jun Hyuk Choi ◽  
Chang Min Lee ◽  
Geun Chul Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document