scholarly journals The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition

2007 ◽  
Vol 18 (6) ◽  
pp. 1061-1069 ◽  
Author(s):  
Yan Yonggang ◽  
J. G. C. Wolke ◽  
Li Yubao ◽  
J. A. Jansen
Author(s):  
Takayuki Narushima ◽  
Kyosuke Ueda

In this chapter, the authors discuss the fabrication and properties of calcium phosphate coatings on titanium (Ti) by radio-frequency (RF) magnetron sputtering. First, they address the necessity of surface modification of metallic biomaterials and the effectiveness of calcium phosphate coating. Next, they briefly review the processes used in the application of calcium phosphate coatings and present the effect of sputtering parameters on the phase and deposition rates of these coatings. Finally, the chapter discusses the performance of amorphous and crystalline (oxyapatite) calcium phosphate coatings on Ti based on in vitro and in vivo evaluations.


2014 ◽  
Vol 1013 ◽  
pp. 188-193 ◽  
Author(s):  
Kseniya Kulyashova ◽  
Yuri P. Sharkeev ◽  
Aizhan Sainova

Results of research of mechanical properties of calciumphosphate coatings produced by the method radio frequency magnetron sputtering on bioinert alloys of titanium, zirconium and were presented. Calcium phosphate coatings show high value of adhesion strength to bioinert metal surface. Calcium phosphate coating on titanium-niobium alloy surface shows the highest value of adhesion strength. Mechanical properties of a composite material based on bioinert alloy and calcium phosphate coating are higher than properties of the components of composite material separately.


2008 ◽  
Vol 42 (3) ◽  
pp. 123-127 ◽  
Author(s):  
A. M. Aronov ◽  
V. F. Pichugin ◽  
E. V. Eshenko ◽  
M. A. Ryabtseva ◽  
R. A. Surmenev ◽  
...  

2013 ◽  
Vol 872 ◽  
pp. 241-247
Author(s):  
Sergey Ivanovich Tverdokhlebov ◽  
Evgeniy Viktorovich Shesterikov ◽  
Alena Igorevna Malchikhina

Hybrid method of obtaining calcium-phosphate coatings is presented in this article. Physical and chemical, mechanical and tribological hybrid coatings research makes it possible to determine the coatings formation modes satisfying medical and technical requirements. This multilayer coating consists of an oxide underlayer formed by gas thermal oxidation and calcium phosphate layer formed by RF magnetron sputtering at a frequency of 13.56 MHz. Experiments were carried out in different modes. Calcium-phosphate coatings formed in mixture of argon and oxygen at 1:1 ratio pressure of 0.3 Pa have the best physical and chemical, mechanical and tribological properties.


MRS Advances ◽  
2018 ◽  
Vol 3 (30) ◽  
pp. 1711-1718 ◽  
Author(s):  
Marcio Luiz dos Santos ◽  
Carla dos Santos Riccardi ◽  
Edson de Almeida Filho ◽  
Antonio C. Guastaldi

ABSTRACTBiomimetic Method has been widely used to prepare calcium phosphate coatings on Ti and its alloys. This modification is based on a Synthetic/simulated Body Fluid (BSF) which facilitates the mimicking of the biological process in order to provide hard tissue repairs. The formation of HA and other calcium phosphates under biological medium and SBF occurs in the presence of Ca2+ and PO43- ions, as well as essential ions such as: Mg2+, HCO3-, K+ and Na+. Ti-15Mo alloy samples were irradiated by pulsed Yb: YAG pulsed laser beam under air and atmospheric pressure. Sequentially, calcium phosphate coatings were deposited on the irradiated surfaces by the biomimetic method. The biomimetic calcium phosphates-based surfaces were submitted to heat treatment conditions at 350°C and 600°C. The present study correlates two conditions of fluency (1,91 and 5,54 J.cm-2) as established have a sufficient energy to promote ablation on the laser beam irradiated surfaces. Likewise, it has been demonstrated the processes of fusion and fast solidification from the laser beam irradiation, under ambient atmosphere, inducing the formation of stoichiometric TiO2 and non-stoichiometric titanium oxides, including Ti3O5, TiO, Ti3O and Ti6O with different oxide percentages depending on the fluency applied. Besides that, laser modification has allowed a clean and reproducible process, providing no traces of contamination, an important feature for clinical applications. The physico-chemical and morphological analysis indicated the formation of a multiphase coatings depending on the heat treatment temperature performed to 350 °C (ACP1 and 2, HAD, HA phases) and 600 °C (HAD, HA and β-TCP phases). It is worth noting that multiphasic bioceramic systems has been gaining attention for biomedical applications. Thus, the laser beam irradiation associated to bioactive coatings of calcium phosphates of biological interest have shown to be promising and economically feasible for use in dental and orthopedic implants.


Sign in / Sign up

Export Citation Format

Share Document