Automated backbone and side-chain assignment of mitochondrial matrix cyclophilin D

2007 ◽  
Vol 38 (3) ◽  
pp. 267-267 ◽  
Author(s):  
Andreas Schedlbauer ◽  
Bernd Hoffmann ◽  
Georg Kontaxis ◽  
Simon Rüdisser ◽  
Ulrich Hommel ◽  
...  
2020 ◽  
Vol 21 (24) ◽  
pp. 9727
Author(s):  
Erika Hemmerová ◽  
Tomáš Špringer ◽  
Zdeňka Krištofiková ◽  
Jiří Homola

In early stages of Alzheimer’s disease (AD), amyloid beta (Aβ) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aβ affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aβ (Aβ1–40, Aβ1–42) with cypD and 17β-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aβ1–40 and Aβ1–42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aβ1–40 to cypD and 17β-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aβ1–42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.


2020 ◽  
Author(s):  
Aarron Phensy ◽  
Kathy L. Lindquist ◽  
Karen A. Lindquist ◽  
Dania Bairuty ◽  
Esha Gauba ◽  
...  

AbstractRedox dysregulation and oxidative stress are final common pathways in the pathophysiology of a variety of psychiatric disorders, including schizophrenia. Oxidative stress causes dysfunction of GABAergic parvalbumin-positive interneurons (PVI), which are crucial for the coordination of neuronal synchrony during sensory- and cognitive-processing. Mitochondria are the main source of reactive oxygen species (ROS) in neurons and they control synaptic activity through their roles in energy production and intracellular calcium homeostasis. We have previously shown that in male mice transient blockade of NMDA receptors during development (subcutaneous injections of 30 mg/kg ketamine (KET) on postnatal days 7, 9, and 11) results in long-lasting alterations in synaptic transmission and reduced parvalbumin expression in the adult prefrontal cortex (PFC), contributing to a behavioral phenotype that mimics multiple symptoms associated with schizophrenia. These changes correlate with oxidative stress and impaired mitochondrial function in both PVI and pyramidal cells. Here, we show that genetic deletion (Ppif-/-) of the mitochondrial matrix protein cyclophilin D (CypD) prevents perinatal KET-induced increases in ROS and the resulting deficits in PVI function, and changes in excitatory and inhibitory synaptic transmission in the PFC. Deletion of CypD also prevented KET-induced behavioral deficits in cognitive flexibility, social interaction, and novel object recognition. Taken together, these data highlight how mitochondrial activity may play an integral role in modulating PVI-mediated cognitive processes.Significance StatementMitochondria are important modulators of oxidative stress and cell function, yet how mitochondrial dysfunction affects cell activity and synaptic transmission in psychiatric illnesses is not well understood. NMDA receptor blockade with ketamine during development causes oxidative stress, dysfunction of parvalbumin-positive interneurons (PVI), and long-lasting physiological and behavioral changes. Here we show that mice deficient for the mitochondrial matrix protein cyclophilin D show robust protection from PVI dysfunction following perinatal NMDAR-blockade. Mitochondria serve as an essential node for a number of stress-induced signaling pathways and our experiments suggest that failure of mitochondrial redox regulation can contribute to PVI dysfunction.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


1998 ◽  
Vol 95 (6) ◽  
pp. 1351-1354 ◽  
Author(s):  
C.-M. Bouché ◽  
P. Le Barny ◽  
H. Facoetti ◽  
F. Soyer ◽  
P. Robin
Keyword(s):  

1984 ◽  
Vol 51 (03) ◽  
pp. 358-361 ◽  
Author(s):  
H Bechtold ◽  
K Andrassy ◽  
E Jähnchen ◽  
J Koderisch ◽  
H Koderisch ◽  
...  

SummaryIn 8 patients on no oral intake and with parenteral alimentation, administration of cephalosporins with N-methyl-thiotetrazole side chain (moxalactam, cefamandole), was associated with prolongation of prothrombin time, appearance in the circulation of descarboxy-prothrombin (counter immunoelectrophoresis and echis carinatus assay) and diminution of protein C. Acute administration of 10 mg vitamin Ki was followed by the transient appearance of vitamin K1 2,3-epoxide, indicating an impaired hepatocellular regeneration of vitamin K1 from the epoxide. Impaired hepatic vitamin K1 metabolism, tentatively ascribed to the N-methyl-thiotetrazole group, is one (but possibly not the only) cause of bleeding complications and depression of vitamin K1dependent procoagulants in patients treated with the new class of cephalosporins.


1961 ◽  
Vol 36 (4) ◽  
pp. 511-519 ◽  
Author(s):  
Margaret Wiener ◽  
Charles I. Lupa ◽  
E. Jürgen Plotz

ABSTRACT 17α-hydroxyprogesterone-4-14C-17α-caproate (HPC), a long-acting progestational agent, was incubated with homogenates of rat liver and human placenta. The rat liver was found to reduce Ring A of HPC under anaerobic conditions to form allopregnane-3β,17α-diol-20-one-17α-caproate and pregnane-3β,17α-diol-20-one-17α-caproate, the allopregnane isomer being the major product. The caproic acid ester was neither removed nor altered during the incubation. Placental tissue did not attack HPC under conditions where the 20-ketone of progesterone was reduced. It is postulated that this absence of attack on the side chain is due to steric hindrance from the caproate ester, and that this may account for the prolonged action of HPC.


2013 ◽  
pp. 1-1
Author(s):  
Alisdair Boag ◽  
Kerry McLaughlin ◽  
Mike Christie ◽  
Peter Graham ◽  
Harriet Syme ◽  
...  

2020 ◽  
Author(s):  
Julian Keupp ◽  
Johannes P. Dürholt ◽  
Rochus Schmid

The prototypical pillared layer MOFs, formed by a square lattice of paddle-<br>wheel units and connected by dinitrogen pillars, can undergo a breathing phase<br>transition by a “wine-rack” type motion of the square lattice. We studied this not<br>yet fully understood behavior using an accurate first principles parameterized force<br>field (MOF-FF) for larger nanocrystallites on the example of Zn 2 (bdc) 2 (dabco) [bdc:<br>benzenedicarboxylate, dabco: (1,4-diazabicyclo[2.2.2]octane)] and found clear indi-<br>cations for an interface between a closed and an open pore phase traveling through<br>the system during the phase transformation [Adv. Theory Simul. 2019, 2, 11]. In<br>conventional simulations in small supercells this mechanism is prevented by periodic<br>boundary conditions (PBC), enforcing a synchronous transformation of the entire<br>crystal. Here, we extend this investigation to pillared layer MOFs with flexible<br>side-chains, attached to the linker. Such functionalized (fu-)MOFs are experimen-<br>tally known to have different properties with the side-chains acting as fixed guest<br>molecules. First, in order to extend the parameterization for such flexible groups,<br>1a new parametrization strategy for MOF-FF had to be developed, using a multi-<br>structure force based fit method. The resulting parametrization for a library of<br>fu-MOFs is then validated with respect to a set of reference systems and shows very<br>good accuracy. In the second step, a series of fu-MOFs with increasing side-chain<br>length is studied with respect to the influence of the side-chains on the breathing<br>behavior. For small supercells in PBC a systematic trend of the closed pore volume<br>with the chain length is observed. However, for a nanocrystallite model a distinct<br>interface between a closed and an open pore phase is visible only for the short chain<br>length, whereas for longer chains the interface broadens and a nearly concerted trans-<br>formation is observed. Only by molecular dynamics simulations using accurate force<br>fields such complex phenomena can be studied on a molecular level.


2020 ◽  
Author(s):  
Kenneth Lucas ◽  
George Barnes

We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of \textit{O}-sulfonation on the collision induced dissociation for serine. Towards this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m\z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m\z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The \mz 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also seen that the RM1 semi empirical method was not able to obtain all of the major peaks seen in experiment for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.


Sign in / Sign up

Export Citation Format

Share Document