scholarly journals Assessment of different computing methods of inspiratory transpulmonary pressure in patients with multiple mechanical problems

Author(s):  
Kamil İnci ◽  
Nazlıhan Boyacı ◽  
İskender Kara ◽  
Gül Gürsel
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doan Cong Le ◽  
Krisana Chinnasarn ◽  
Jirapa Chansangrat ◽  
Nattawut Keeratibharat ◽  
Paramate Horkaew

AbstractSegmenting a liver and its peripherals from abdominal computed tomography is a crucial step toward computer aided diagnosis and therapeutic intervention. Despite the recent advances in computing methods, faithfully segmenting the liver has remained a challenging task, due to indefinite boundary, intensity inhomogeneity, and anatomical variations across subjects. In this paper, a semi-automatic segmentation method based on multivariable normal distribution of liver tissues and graph-cut sub-division is presented. Although it is not fully automated, the method minimally involves human interactions. Specifically, it consists of three main stages. Firstly, a subject specific probabilistic model was built from an interior patch, surrounding a seed point specified by the user. Secondly, an iterative assignment of pixel labels was applied to gradually update the probabilistic map of the tissues based on spatio-contextual information. Finally, the graph-cut model was optimized to extract the 3D liver from the image. During post-processing, overly segmented nodal regions due to fuzzy tissue separation were removed, maintaining its correct anatomy by using robust bottleneck detection with adjacent contour constraint. The proposed system was implemented and validated on the MICCAI SLIVER07 dataset. The experimental results were benchmarked against the state-of-the-art methods, based on major clinically relevant metrics. Both visual and numerical assessments reported herein indicated that the proposed system could improve the accuracy and reliability of asymptomatic liver segmentation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christopher Rugg ◽  
Stefan Schmid ◽  
Janett Kreutziger ◽  
Mathias Ströhle

2021 ◽  
Vol 11 (9) ◽  
pp. 3952
Author(s):  
Shimin Tang ◽  
Zhiqiang Chen

With the ubiquitous use of mobile imaging devices, the collection of perishable disaster-scene data has become unprecedentedly easy. However, computing methods are unable to understand these images with significant complexity and uncertainties. In this paper, the authors investigate the problem of disaster-scene understanding through a deep-learning approach. Two attributes of images are concerned, including hazard types and damage levels. Three deep-learning models are trained, and their performance is assessed. Specifically, the best model for hazard-type prediction has an overall accuracy (OA) of 90.1%, and the best damage-level classification model has an explainable OA of 62.6%, upon which both models adopt the Faster R-CNN architecture with a ResNet50 network as a feature extractor. It is concluded that hazard types are more identifiable than damage levels in disaster-scene images. Insights are revealed, including that damage-level recognition suffers more from inter- and intra-class variations, and the treatment of hazard-agnostic damage leveling further contributes to the underlying uncertainties.


1989 ◽  
Vol 16 (4) ◽  
pp. 215-220 ◽  
Author(s):  
François Jardin ◽  
Dominique Brun-Ney ◽  
Pierre Cazaux ◽  
Olivier Dubourg ◽  
Anne Hardy ◽  
...  

Author(s):  
Rawad Bitar ◽  
Yuxuan Xing ◽  
Yasaman Keshtkarjahromi ◽  
Venkat Dasari ◽  
Salim El Rouayheb ◽  
...  

AbstractEdge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (1) the privacy requirements of IoT applications and devices, and (2) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones.


Sign in / Sign up

Export Citation Format

Share Document