scholarly journals Lyapunov Spectrum of Nonautonomous Linear Young Differential Equations

2019 ◽  
Vol 32 (4) ◽  
pp. 1749-1777 ◽  
Author(s):  
Nguyen Dinh Cong ◽  
Luu Hoang Duc ◽  
Phan Thanh Hong

Abstract We show that a linear Young differential equation generates a topological two-parameter flow, thus the notions of Lyapunov exponents and Lyapunov spectrum are well-defined. The spectrum can be computed using the discretized flow and is independent of the driving path for triangular systems which are regular in the sense of Lyapunov. In the stochastic setting, the system generates a stochastic two-parameter flow which satisfies the integrability condition, hence the Lyapunov exponents are random variables of finite moments. Finally, we prove a Millionshchikov theorem stating that almost all, in a sense of an invariant measure, linear nonautonomous Young differential equations are Lyapunov regular.

2012 ◽  
Vol 12 (04) ◽  
pp. 1250002 ◽  
Author(s):  
NGUYEN DINH CONG ◽  
NGUYEN THI THE

We introduce a concept of Lyapunov exponents and Lyapunov spectrum of a stochastic differential algebraic equation (SDAE) of index-1. The Lyapunov exponents are defined samplewise via the induced two-parameter stochastic flow generated by inherent regular stochastic differential equations. We prove that Lyapunov exponents are nonrandom.


2001 ◽  
Vol 01 (01) ◽  
pp. 127-157 ◽  
Author(s):  
NGUYEN DINH CONG

We introduce a concept of Lyapunov exponents and Lyapunov spectrum for nonautonomous linear stochastic differential equations. The Lyapunov exponents are defined samplewise via the two-parameter flow generated by the equation. We prove that Lyapunov exponents are finite and nonrandom. Lyapunov exponents are used for investigation of Lyapunov regularity and stability of nonautonomous stochastic differential equations. The results show that the concept of Lyapunov exponents is still very fruitful for stochastic objects and gives us a useful tool for investigating sample stability as well as qualitative behavior of nonautonomous linear and nonlinear stochastic differential equations.


Author(s):  
Nguyen Cong ◽  
Doan Son ◽  
Hoang Tuan

AbstractOur aim in this paper is to investigate the asymptotic behavior of solutions of linear fractional differential equations. First, we show that the classical Lyapunov exponent of an arbitrary nontrivial solution of a bounded linear fractional differential equation is always nonnegative. Next, using the Mittag-Leffler function, we introduce an adequate notion of fractional Lyapunov exponent for an arbitrary function. We show that for a linear fractional differential equation, the fractional Lyapunov spectrum which consists of all possible fractional Lyapunov exponents of its solutions provides a good description of asymptotic behavior of this equation. Consequently, the stability of a linear fractional differential equation can be characterized by its fractional Lyapunov spectrum. Finally, to illustrate the theoretical results we compute explicitly the fractional Lyapunov exponent of an arbitrary solution of a planar time-invariant linear fractional differential equation.


Author(s):  
B. D. Sleeman

SynopsisThis paper discusses the existence, under fairly general conditions, of solutions of the two-parameter eigenvalue problem denned by the differential equation,and three point Sturm-Liouville boundary conditions.


2003 ◽  
Vol 13 (05) ◽  
pp. 1287-1298 ◽  
Author(s):  
SERKAN T. IMPRAM ◽  
RUSSELL JOHNSON ◽  
RAFFAELLA PAVANI

We analyze the global structure of the solutions of a three-dimensional, autonomous ordinary differential equation which depends on two parameters. We use graphical, heuristic, and rigorous arguments to show that as the parameters vary, a wide range of dynamical behavior is displayed.


2018 ◽  
Vol 14 (05) ◽  
pp. 1427-1457
Author(s):  
Yunqing Tang

The Grothendieck–Katz [Formula: see text]-curvature conjecture predicts that an arithmetic differential equation whose reduction modulo [Formula: see text] has vanishing [Formula: see text]-curvatures for almost all [Formula: see text] has finite monodromy. It is known that it suffices to prove the conjecture for differential equations on [Formula: see text] We prove a variant of this conjecture for [Formula: see text] which asserts that if the equation satisfies a certain convergence condition for all [Formula: see text] then its monodromy is trivial. For those [Formula: see text] for which the [Formula: see text]-curvature makes sense, its vanishing implies our condition. We deduce from this a description of the differential Galois group of the equation in terms of [Formula: see text]-curvatures and certain local monodromy groups. We also prove similar variants of the [Formula: see text]-curvature conjecture for an elliptic curve with [Formula: see text]-invariant [Formula: see text] minus its identity and for [Formula: see text].


2002 ◽  
Vol 02 (02) ◽  
pp. 175-201 ◽  
Author(s):  
NGUYEN DINH CONG ◽  
STEFAN SIEGMUND

We investigate a concept of dichotomy spectrum for nonautonomous linear stochastic differential equations, which is defined with sample-wise exponential dichotomy of the two-parameter flow generated by the equation. We use random norm and cohomology to capture the nature of the stochastic nonuniformity. The main result is our spectral theorem stating that the dichotomy spectrum consists of compact random intervals with corresponding spectral manifolds, which are Oseledets spaces if the equation generates a random dynamical system. The dichotomy spectrum is nonrandom and equals the Lyapunov spectrum if the stochastic differential equation is Lyapunov regular.


Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


2020 ◽  
Vol 29 (4) ◽  
pp. 444-453
Author(s):  
Mykola Nagirniak

The work presents the equations of the theory of symmetrical plates, resting on one-way, single-layer, two-parameter Vlasov’s subsoil. Two cases of differential equation solution of the plate deflection of thin and medium thickness on the ground substrate were analyzed depending on the size of the integral characteristics UÖD and 6ÖD. The example of loading the circular plate with a Pk load evenly distributed over the edge was considered and shows dimensionless graphs of deflection, bending torques and transverse forces in the plate and in the ground subsoil. The effect of the Poisson’s coefficient of the plate on deflection values and cross-sectional forces was investigated. The Poisson’s number has been shown to have a significant influence on deflection values and bending torque, however shown negligible effect on transverse forces values.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


Sign in / Sign up

Export Citation Format

Share Document