The European Ecotron of Montpellier: experimental platforms to study ecosystem response to climate change

Author(s):  
Joana Sauze ◽  
Jacques Roy ◽  
Clément Piel ◽  
Damien Landais ◽  
Emmanuel S Gritti ◽  
...  

<p>The sustainability of agricultural, forested and other managed or natural ecosystems is critical for the future of mankind. However, the services provided by these ecosystems are under threat due to climate change, loss of biodiversity, and land use changes. In order to face the challenges of preserving or improving ecosystems services and securing food supply we need to understand and forecast how ecosystems will respond to current and future changes. To help answer those questions Ecotrons facilities are born. Such infrastructures provide sets of confinement units for the manipulation of environmental conditions and real-time measurement of ecological processes under controlled and reproduceable conditions, bridging the gap between the complexity of in natura studies and the simplicity of laboratory experiments.</p><p>The European Ecotron of Montpellier (www.ecotron.cnrs.fr) is an experimental research infrastructure for the study of the impact of climate change on ecosystem functioning and biodiversity. This infrastructure offers, through calls open to the international community, three experimental platforms at different scales. The Macrocosms platform is composed of twelve 40 m<sup>3</sup> units, each able to host 2-12 t lysimeters, with a 2-5 m² canopy area and a soil depth of up to 2 m. The Mesocosms one has eighteen 2-4 m<sup>3</sup> units, each able to host lysimeters of 0.4-1 m depth and 0.4-1 m² area. The Microcosms platform consists of growth chambers (1 m height, 1 m² area) in which smaller units (with photosynthetic plants, soils, insects, etc.) can be installed. Each experimental unit of each platform allows to confine terrestrial ecosystems. This way, environmental parameters such as temperature (-10 to +50 °C), relative humidity (20-80 %), precipitation (sprinkler or drip) and atmospheric CO<sub>2</sub> concentration (200-1000 ppm) are strictly and continuously controlled and recorded. But the uniqueness of the European Ecotron of Montpellier lies on its ability to also continuously measure, in each unit, net gas exchange (evapotranspiration, CO<sub>2</sub> / CH<sub>4</sub> / N<sub>2</sub>O net fluxes) that occur in between the ecosystem studied and the atmosphere, as well as CO<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>O and O<sub>2</sub> isotopologues. Those tools are powerful and remarkable to access additional information about processus involved in ecosystem functioning.</p><p>The aim of this presentation is to describe the Macrocosms and the Mesocosms platforms through examples of international projects recently run in these platforms.</p>

Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Author(s):  
Paula Schirrmacher ◽  
Christina C. Roggatz ◽  
David M. Benoit ◽  
Jörg D. Hardege

AbstractWith carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


2022 ◽  
Vol 9 ◽  
Author(s):  
Peijun Ju ◽  
Wenchao Yan ◽  
Jianliang Liu ◽  
Xinwei Liu ◽  
Liangfeng Liu ◽  
...  

As a sensitive, observable, and comprehensive indicator of climate change, plant phenology has become a vital topic of global change. Studies about plant phenology and its responses to climate change in natural ecosystems have drawn attention to the effects of human activities on phenology in/around urban regions. The key factors and mechanisms of phenological and human factors in the process of urbanization are still unclear. In this study, we analyzed variations in xylophyta phenology in densely populated cities during the fast urbanization period of China (from 1963 to 1988). We assessed the length of the growing season affected by the temperature and precipitation. Temperature increased the length of the growing season in most regions, while precipitation had the opposite effect. Moreover, the plant-growing season is more sensitive to preseason climate factors than to annual average climate factors. The increased population reduced the length of the growing season, while the growing GDP increased the length of the growing season in most regions (8 out of 13). By analyzing the impact of the industry ratio, we found that the correlation between the urban management of emerging cities (e.g., Chongqing, Zhejiang, and Guizhou) and the growing season is more significant, and the impact is substantial. In contrast, urban management in most areas with vigorously developed heavy industry (e.g., Heilongjiang, Liaoning, and Beijing) has a weak and insignificant effect on plant phenology. These results indicate that different urban development patterns can influence urban plant phenology. Our results provide some support and new thoughts for future research on urban plant phenology.


2022 ◽  
pp. 748-763
Author(s):  
Ashok K. Rathoure ◽  
Unnati Rajendrakumar Patel

Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this chapter, the authors first examined the different possible effects of climate change that can operate at individual, population, species, community, ecosystem, notably showing that species can respond to climate challenges by shifting their climatic change. Climate change is one of the most important global environmental challenges that affect all the natural ecosystems of the world. Due to the fragile environment, mountain ecosystems are the most vulnerable to the impact of climate change. Climatic change will affect vegetation, humans, animals, and ecosystem that will impact on biodiversity. Mountains have been recognized as important ecosystems by the Convention on Biological Diversity. Climate change will not only threaten the biodiversity, but also affect the socio-economic condition of the indigenous people of the state. Various activities like habitat loss, deforestation, and exploitation amplify the impact of climate change on biodiversity.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 142
Author(s):  
Quyet Manh Vu ◽  
Tri Dan Nguyen

This study aims to assess the potential development of selected agroforestry options for three provinces in the Northwest of Vietnam. Available spatial data including Land use/land cover maps and forest inventory maps were used as the base maps in combination with supplementary data and field survey to determine the potential agroforestry areas. Soil types, soil depth, soil texture, elevation, slope, temperature and rainfall were used to evaluate the biophysical suitability of ten typical agroforestry options in the study region. For assessing the impact of climate change to agroforestry suitability in the future, temperature and precipitation data extracted from two climate changes scenarios (Representative Concentration Pathway 4.5 and 8.5 in 2046–2065) were used. The results showed that the suitable areas for agroforestry development in Dien Bien, Sơn La and Yen Bai provinces were 267.74.01 ha, 405,597.96 ha; and 297,995.55 ha, respectively. Changes in temperature and precipitation by 2 climate change scenarios affected significantly to the suitability of Docynia indica + livestock grass, Teak + plum + coffee + grass and Plum + maize + livestock grass options. The map of agroforestry suitability can be served as a useful source in developing and expanding the area of agroforestry in the target provinces, and can be applied for other provinces in the same region in Vietnam.


2007 ◽  
Vol 4 (4) ◽  
pp. 2385-2405 ◽  
Author(s):  
R. Harrison ◽  
C. Jones

Abstract. Natural ecosystems respond to, and may affect climate change through uptake and storage of atmospheric CO2. Here we use the land-surface and carbon cycle model JULES to simulate the contemporary European carbon balance and its sensitivity to rising CO2 and changes in climate. We find that the impact of climate change is to decrease the ability of Europe to store carbon by about 175 TgC yr−1. In contrast, the effect of rising atmospheric CO2 has been to stimulate increased uptake and storage. The CO2 effect is currently dominant leading to a net increase of around 150 TgC yr−1. Our simulations do not at present include other important factors such as land use and management, the effects of forest age classes and nitrogen deposition. There seems to be an emerging consensus that changes in climate will weaken the European land-surface's ability to take up and store carbon. It is likely that this effect is happening at the present and will continue even more strongly in the future as climate continues to change. Although CO2 enhanced growth currently exceeds the climate effect, this may not continue indefinitely. Understanding this balance and its implications for mitigation policies is becoming increasingly important.


2008 ◽  
Vol 8 (4) ◽  
pp. 15131-15163 ◽  
Author(s):  
J. Avise ◽  
J. Chen ◽  
B. Lamb ◽  
C. Wiedinmyer ◽  
A. Guenther ◽  
...  

Abstract. The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC) A2 scenario are derived through the downscaling of Parallel Climate Model (PCM) output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4) global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS), and changes in land-use are projected using data from the Community Land Model (CLM) and the Spatially Explicit Regional Growth Model (SERGOM). For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv) on average daily maximum 8-h (DM8H) ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv). Changes in average 24-h (A24-h) PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3), while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2.5 concentrations by −0.9 μg m−3, but this reduction is more than tripled in the Southeastern US due to increased precipitation and wet deposition.


The Holocene ◽  
2019 ◽  
Vol 29 (7) ◽  
pp. 1176-1188 ◽  
Author(s):  
Francisca Alba-Sánchez ◽  
José Antonio López-Sáez ◽  
Daniel Abel-Schaad ◽  
Silvia Sabariego Ruiz ◽  
Sebastián Pérez-Díaz ◽  
...  

Current knowledge of climate change effects on forest ecology and species conservation should be linked to understanding of the past-time. Abies pinsapo forests constitute a model of an endangered ecosystem, highly vulnerable to ongoing warming, whose populations have been declining for centuries, while the drivers of this local depletion trend remain poorly understood. We hypothesized that long-term disturbances, both human- and natural-induced, have shaped A. pinsapo forests, contributing to these decline processes. Until today, studies using fossil pollen record to identify past climate impacts and land-use changes on A. pinsapo populations have not been done. Here, we investigate forests’ dynamics since the late Holocene (1180 cal. AD to present) in Southern Iberian Peninsula from a fossil pollen record by comparing the results obtained with climate fluctuations and land-uses changes. The pollen sequence shows a phase of stability during the Islamic Period (~1180–1400 cal. AD; ‘Medieval Climate Anomaly’), followed by increasing degradation at Christian Period concurrent with ‘Little Ice Age’ (LIA) (ca. 1487–1530 cal. AD). The Modern Period (1530–1800 cal. AD; LIA) is linked to intensive forest management, related to the naval industry. Afterwards, a progressive reduction is recorded during the Contemporary Age period (‘Industrial Period’) until ‘Recent Warming’. In short, historical severe forest management coupled with increasing aridity since LIA appear to influence A. pinsapo forest current species composition and poor structural diversity. These disturbances might be limiting the resilience of A. pinsapo forests under a climate change scenario. A selected forest management could promote a more complex forest structure.


2016 ◽  
Vol 9 (1) ◽  
pp. 256 ◽  
Author(s):  
Thulani Dube ◽  
Philani Moyo ◽  
Moreblessings Ncube ◽  
Douglas Nyathi

<p>Several local studies have been carried out on the impact of climate change on livelihoods and development especially in developing countries. However, there is a general scarcity of literature that makes a comparative appraisal of the impacts of climate change on agro-ecological based livelihoods across the African continent. This paper seeks to address that gap by making a comparative analysis of the effects of climate change on agro-based livelihoods across the African continent, focusing on Eastern, Western, Southern Africa and the Sahel region. A cross continental perspective on this issue is important in informing current global climate change negotiations and response strategies both at global level and national levels. While some studies have been conducted at individual country levels about the projected and recorded impacts of climate change, there remains a dearth of literature that reviews and consolidates these findings to give an overall holistic picture about continental and sub-continental impacts in Africa especially as relating to local agro and ecological based livelihoods. This study finds out that the impact of climate change is invariably negative across the whole of Africa as it leads to failing agricultural yields and a reduction of bio-diversity. The paper recommends an intensification for the support of livelihood diversification strategies in rural development planning. It further recommends policy strategies that particularly targets the poor and vulnerable communities whose livelihoods hinge on agriculture and natural ecosystems as these will suffer the most from the impact of climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document