scholarly journals Theoretical Modeling of High-Resolution X-ray Spectra Emitted by Tungsten and Molybdenum Ions from Tokamak Plasmas

2020 ◽  
Vol 39 (5) ◽  
pp. 194-201
Author(s):  
Ł. Syrocki ◽  
K. Słabkowska ◽  
E. Węder ◽  
M. Polasik ◽  
J. Rzadkiewicz

AbstractIn order to allow the advanced interpretation of the X-ray spectra registered by the high-resolution crystal KX1 spectrometer on the JET with an ITER-like wall, especially to determine how the relative emission contributions of tungsten and molybdenum ions change during a JET discharge, the X-ray spectra have been carefully modeled over a narrow wavelength range. The simulations have been done in the framework of Collisional–Radiative model implemented in Flexible Atomic Code for an electron density (ne = 2.5 × 1019 m−3), and electron temperatures between Te = 3.0 keV and Te = 4.5 keV, typical for JET. Moreover, performed detailed analysis in the framework of the proposed procedure can be useful in determining temperature of a high temperature plasma generated in tokamaks.

2000 ◽  
Vol 61 (5) ◽  
pp. 5701-5709 ◽  
Author(s):  
D. Pacella ◽  
K. B. Fournier ◽  
M. Zerbini ◽  
M. Finkenthal ◽  
M. Mattioli ◽  
...  

1989 ◽  
Vol 104 (1) ◽  
pp. 31-60
Author(s):  
Ester Antonucci

AbstractNew perspectives in solar diagnosis have been opened in recent years with the advent of high-resolution soft X-ray spectroscopy for plasmas forming at temperatures above 107 K. The spectra obtained with the soft X-ray spectrometers flown during the last solar maximum on the major space missions dedicated to flares have allowed detailed studies of the hydrodynamic response of coronal loops to impulsive energy deposition and of the formation of the high-temperature plasma as a consequence of such dynamic effects. These studies are possible since high-resolution spectrometers give an accurate measure of both line intensities and profiles in important spectral regions, covering the emission of highly ionized heavy ions, which allow a direct determination of most of the crucial plasma parameters in the flare region. In response to the impulsive energy release in the flare region, while the intensity of soft X-ray lines increases, line profiles show large non-thermal broadenings and strong blue-asymmetries.There have been important contributions in the understanding of the formation of the flare high-temperature plasma, as an effect of the hydrodynamic response of the solar atmosphere to impulsive chromospheric heating. On the other hand, the attempts to investigate the primary energy release and transport, on the basis of the soft X-ray spectral data, have not yet been entirely successful. Significant differences in the emitted spectra are expected at the very onset of flares for different energy deposition and transport processes, but the sensitivity of the present experiments is still insufficient to detect with good statistics the early stage of flares and, therefore, to allow a reliable discrimination. It is expected that future experiments with higher sensitivity will be of great importance for relating with less ambiguity the observed flare evolution in soft X-rays to the primary energy deposition in the flaring coronal loops.


2004 ◽  
Vol 22 (3) ◽  
pp. 245-251 ◽  
Author(s):  
TAKAKO KATO ◽  
NORIMASA YAMAMOTO ◽  
FRANK B. ROSMEJ

X-ray spectra of H-like Mg ions produced in a laser plasma have been measured by space-resolved high-resolution spectroscopy. We identified satellite lines near Lyα lines, 2lnl′ − 1snl′ +hν forn= 2, 3, and 4. We construct a collisional radiative model including the doubly excited states for the intensity ratios of satellite lines. We use atomic data calculated by different methods for satellite lines and compare the results. We derive the electron temperature and density of the laser-produced plasma by a new technique using intensity ratios of only satellite lines. This technique is useful because the Lyα lines are often affected by opacity.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


2019 ◽  
Vol 2019 (6) ◽  
pp. 875-884 ◽  
Author(s):  
Maxim G. Chegerev ◽  
Alexandr V. Piskunov ◽  
Kseniya V. Tsys ◽  
Andrey G. Starikov ◽  
Klaus Jurkschat ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 119-122
Author(s):  
S. Gortschakow ◽  
D. Kalanov ◽  
Yu. Golubovskii

<p class="Default">Deviations from chemical equilibrium in argon arc plasma are analysed by means of collisional-radiative model. Corresponding comprehensive kinetic scheme has been developed and applied form study of free-burning arc at the conditions typical for welding applications. While the natural lifetime have been used for radiation emitted from highly excited argon states, the resonance radiation was described taking into account the radiation transport effects. Resulting spatial distributions of excited argon atoms are compared for the cases of LTE and two-temperature plasma using different approaches for the description of the resonance radiation transport.<br /><br /></p>


Sign in / Sign up

Export Citation Format

Share Document