scholarly journals Comparison of Experimental Measurements of Material Grain Size Using Ultrasound

Author(s):  
Jie Zhang ◽  
Yongfeng Song ◽  
Xiongbing Li ◽  
ChengHuan Zhong
2022 ◽  
Vol 17 (1) ◽  
Author(s):  
J. Kober ◽  
A.S. Gliozzi ◽  
M. Scalerandi ◽  
M. Tortello

2015 ◽  
Vol 60 (1) ◽  
pp. 143-156 ◽  
Author(s):  
Tomasz Wydro

Abstract Laboratory examinations on the plow heads at various filling rate and material grain-size, as well as various values of worm thread angle of the plow head have been executed. Influence of the worm thread angle and plow head filling onto optimal loading efficiency, has also been tested.


1991 ◽  
Vol 59 (27) ◽  
pp. 3530-3532 ◽  
Author(s):  
A. Aharoni ◽  
M. Tur ◽  
K. M. Jassby

2013 ◽  
Vol 4 (3) ◽  
pp. 29-33 ◽  
Author(s):  
T.W. Lau ◽  
N.R. Afshar

These Water resource projects and hydraulic engineering works have been developing rapidly throughout the world, thus prediction of water roughness coefficient is becoming an importance criteria for the designs of hydraulic related structure like open channel, and dam structure. The purposes of this research are to determine the effect of roughness on discharge and study on the factors that affect roughness coefficient. The roughness coefficient for this study is expressed in terms of Manning’s n. Experimental works were carried out to study the effect of roughness by using flumes (8m x 0.3m x 0.4m) with different types of roughened bed such as 2mm grain size plate and 5mm grain size plate. The experiments were being tested with various flow rates for slope equal to 1:300, 1:600 and 1:900 to determine the effect of slope on roughness coefficient. The results of the experimental study were presented and shown that the effect of surface roughness, material grain size, channel slope, and Manning’s roughness coefficient on flow rate. For the range of conditions tested, the discharge was found to be decreased as roughness coefficient increase. From the experiments, it shows smoother surface is having lower roughness coefficient and less retarding effect on the water flow, higher flow rate is produced. As conclusion, flow rate and roughness coefficient were influenced by bed roughness and slope.


1993 ◽  
Vol 30 (5) ◽  
pp. 727-738 ◽  
Author(s):  
P.G. Nicholson ◽  
R.B. Seed ◽  
H.A. Anwar

Several alternative approaches have been suggested for evaluation and correction of the testing errors caused by membrane compliance. The degree to which membrane compliance may affect the results of an undrained test is a function of the soil grain size and overall geometry of the test specimen, as well as specimen density and range of effective confining stresses during a given test. Membrane-compliance effects may be negligible for fine sands and silts tested in conventional 71 mm diameter samples, since even very thin membranes cannot penetrate significantly into the small surficial voids. For medium to coarse sands and gravels, however, membrane-compliance effects may have a significant influence on test results. The scope of this paper is threefold: firstly, to review, examine, and evaluate the variety of methods to measure and characterize membrane compliance; secondly, to develop an improved understanding of the factors affecting membrane compliance; and thirdly, to provide an enhanced, updated, and expanded correlation for estimating membrane compliance characteristics as a function of material grain size for a range of soil types, including a wide range of gradation types and representative grain sizes from silts through gravels. Key words : membrane, penetration, compliance, undrained testing, triaxial, measurement, evaluation.


Author(s):  
Ronald W. Armstrong

A review is given of the analogous dependence on reciprocal square root of grain size or crack size of fracture strength measurements reported for steel and other potentially brittle materials. The two dependencies have much in common. For onset of cleavage in steel, attention is focused on relationship of the essentially athermal fracture stress compared with a quite different viscoplastic yield stress behaviour. Both grain-size-dependent stresses are accounted for in terms of dislocation pile-up mechanics. Lowering of the cleavage stress occurs in steel because of carbide cracking. For crack size dependence, there is complication of localized crack tip plasticity in fracture mechanics measurements. Crack-size-dependent conventional and indentation fracture mechanics measurements are described also for results obtained on the diverse materials: polymethylmethacrylate, silicon crystals, alumina polycrystals and WC-Co (cermet) composites.


Sign in / Sign up

Export Citation Format

Share Document