scholarly journals From Waste to Reuse: Manufacture of Ecological Composites Based on Biopolyethylene/wood Powder with PE-g-MA and Macaíba Oil

Author(s):  
Fabiano Santana da Silva ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo
Keyword(s):  
2021 ◽  
Vol 1098 (6) ◽  
pp. 062034
Author(s):  
A Kholil ◽  
S T Dwiyati ◽  
R Riyadi ◽  
J P Siregar ◽  
N G Yoga ◽  
...  

2002 ◽  
Vol 10 (3) ◽  
pp. 203-214 ◽  
Author(s):  
N. Gierlinger ◽  
M. Schwanninger ◽  
B. Hinterstoisser ◽  
R. Wimmer

The feasibility of Fourier transform near infrared (FT-NIR) spectroscopy to rapidly determine extractive and phenolic content in heartwood of larch trees ( Larix decidua MILL., L. leptolepis (LAMB.) CARR. and the hybrid L. x eurolepis) was investigated. FT-NIR spectra were collected from wood powder and solid wood using a fibre-optic probe. Partial Least Squares (PLS) regression analyses were carried out describing relationships between the data sets of wet laboratory chemical data and the FT-NIR spectra. Besides cross and test set validation the established models were subjected to a further evaluation step by means of additional wood samples with unknown extractive content. Extractive and phenol contents of these additional samples were predicted and outliers detected through Mahalanobis distance calculations. Models based on the whole spectral range and without data pre-processing performed well in cross-validation and test set validation, but failed in the evaluation test, which is based on spectral outlier detection. But selection of data pre-processing methods and manual as well as automatic restriction of wavenumber ranges considerably improved the model predictability. High coefficients of determination ( R2) and low root mean square errors of cross-validation ( RMSECV) were obtained for hot water extractives ( R2 = 0.96, RMSECV = 0.86%, range = 4.9–20.4%), acetone extractives ( R2 = 0.86, RMSECV = 0.32%, range = 0.8–3.6%) and phenolic substances ( R2 = 0.98, RMSECV = 0.21%, range = 0.7–4.9%) from wood powder. The models derived from wood powder spectra were more precise than those obtained from solid wood strips. Overall, NIR spectroscopy has proven to be an easy to facilitate, reliable, accurate and fast method for non-destructive wood extractive determination.


2011 ◽  
Vol 236-238 ◽  
pp. 87-90
Author(s):  
Li Ying Guo

Ionic liquid, 1-(2-hydroxylethyl)-3-ethylene imidazolium chloride ([HeVIM]Cl) was synthesized and its chemical structures was examined by FTIR and 1HNMR. Fir powder was extracted with a mixture of benzene/ethanol or activated with 25% (mass fraction) NaOH under normal temperature and pressure, microwave and high pressure. Dissolution of the pretreated wood powder in [HeVIM]Cl by microwave (90°C, 400w) was studied. The results showed that the ionic liquid [HeVIM]Cl exhibited a good solubility. Wood powder pretreated with 25% NaOH under high pressure had the lowest crystallinity (2.4%) and the highest dissolution rate (21.6%).


2008 ◽  
Vol 199 (1-3) ◽  
pp. 396-401 ◽  
Author(s):  
Tsunehisa Miki ◽  
Kazutoshi Takeuchi ◽  
Hiroyuki Sugimoto ◽  
Kozo Kanayama

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4947-4962
Author(s):  
Jin Yan ◽  
Jianan Liu ◽  
Liqiang Zhang ◽  
Zhili Tan ◽  
Haoran Zhang ◽  
...  

The influence of the process parameters on the mechanical properties of compact wood powder generated via hot-pressing was analyzed through a single-factor experiment. The mechanical properties exhibited a nonlinear trend relative to the process conditions of hot-pressed compact wood powder. The relationship models between the process parameters and the mechanical properties for the compact wood powder were established by applying a multiple regression analysis and neural network methods combined with data from an orthogonal array design. A comparison between experimental and predicted results was made to investigate the accuracy of the established models by applying several data groups among the single-factor experiments. The results showed that the accuracy of the neural network model in terms of predicting the mechanical properties was greater compared with the multiple regression model. This demonstrates that the established neural network model had a better prediction performance, and it can accurately map the relationship between the process conditions and the mechanical properties of the compact wood powder.


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
Author(s):  
Yanhua Zhang ◽  
Runan Kou ◽  
Shanshan Lv ◽  
Libin Zhu ◽  
Haiyan Tan ◽  
...  

BioResources ◽  
2016 ◽  
Vol 11 (4) ◽  
Author(s):  
Chang-goo Lee ◽  
Chul Choi ◽  
Ji-chang Yoo ◽  
Hee-jin Kim ◽  
Seung-min Yang ◽  
...  

Author(s):  
Ying Yu ◽  
Manabu Nomura ◽  
Hiroyuki Hamada

Recent years, thermoplastics incorporated with particulate fillers have been gained high interests. To improve the mechanical properties of the natural particle reinforced polymer plastics, hybrid structure has been applied on the composite combining natural particle with stronger synthetic fibers. However, the reinforcing mechanism of the hybrid composite is quite complicated. Experiments on it may become time consuming and cost prohibitive. Therefore, researchers are interested in studying variable models to predict the elastic properties of the composites. In this study, glass short fiber/wood particle/pp hybrid composites were prepared by injection molding process at a fixed reinforcement to matrix ratio of 51:49. 4 kinds of hybrid specimens with glass fiber/wood particle ratios of 41:10, 31:20, 21:30 and 11:40 were fabricated. The effect of hybridization content on the mechanical properties of the composites was evaluated based on tensile test. Theoretically, the elastic modulus of hybrid composites was predicted by using the rule of hybrid mixtures (RoHM) equation and classical lamination theory (CLT) and the accuracy of the two estimation models has been discussed. Results showed that it can be considered the hybridization of wood powder into glass/PP composite could contribute to a similar high elastic modulus with high green degree. On the other hand, the fiber orientation factor, fiber length distribution factor, powder dispersion factor were very important factors and need to be considered in the prediction model.


Sign in / Sign up

Export Citation Format

Share Document