Structural Basis of the Sec Translocon and YidC Revealed Through X-ray Crystallography

2019 ◽  
Vol 38 (3) ◽  
pp. 249-261 ◽  
Author(s):  
Tomoya Tsukazaki
2020 ◽  
Author(s):  
Sophie M. Travis ◽  
Kevin DAmico ◽  
I-Mei Yu ◽  
Safraz Hamid ◽  
Gabriel Ramirez-Arellano ◽  
...  

AbstractMultisubunit tethering complexes (MTCs) are large (250 to >750 kDa), conserved macromolecular machines that are essential for SNARE-mediated membrane fusion in all eukaryotes. MTCs are thought to function as organizers of membrane trafficking, mediating the initial, long-range interaction between a vesicle and its target membrane and promoting the formation of membrane-bridging SNARE complexes. Previously, we reported the structure of the Dsl1 complex, the simplest known MTC, which is essential for COPI-mediated transport from the Golgi to the endoplasmic reticulum (ER). This structure suggested how the Dsl1 complex might function to tether a vesicle to its target membrane by binding at one end to the COPI coat and at the other end to ER SNAREs. Here, we use x-ray crystallography to investigate these Dsl1-SNARE interactions in greater detail. The Dsl1 complex comprises three subunits that together form a two-legged structure with a central hinge. Our results show that distal regions of each leg bind N-terminal Habc domains of the ER SNAREs Sec20 (a Qb-SNARE) and Use1 (a Qc-SNARE). The observed binding modes appear to anchor the Dsl1 complex to the ER target membrane while simultaneously ensuring that both SNAREs are in open conformations with their SNARE motifs available for assembly. The proximity of the two SNARE motifs, and therefore their ability to enter the same SNARE complex, depends on the relative orientation of the two Dsl1 legs.


Author(s):  
Nobuo Okazaki ◽  
Michael Blaber ◽  
Ryota Kuroki ◽  
Taro Tamada

Glycosyltrehalose synthase (GTSase) converts the glucosidic bond between the last two glucose residues of amylose from an α-1,4 bond to an α-1,1 bond, generating a nonreducing glycosyl trehaloside, in the first step of the biosynthesis of trehalose. To better understand the structural basis of the catalytic mechanism, the crystal structure of GTSase from the hyperthermophilic archaeonSulfolobus shibataeDSM5389 (5389-GTSase) has been determined to 2.4 Å resolution by X-ray crystallography. The structure of 5389-GTSase can be divided into five domains. The central domain contains the (β/α)8-barrel fold that is conserved as the catalytic domain in the α-amylase family. Three invariant catalytic carboxylic amino acids in the α-amylase family are also found in GTSase at positions Asp241, Glu269 and Asp460 in the catalytic domain. The shape of the catalytic cavity and the pocket size at the bottom of the cavity correspond to the intramolecular transglycosylation mechanism proposed from previous enzymatic studies.


2016 ◽  
Vol 90 (9) ◽  
pp. 4843-4848 ◽  
Author(s):  
Stefan Weichert ◽  
Anna Koromyslova ◽  
Bishal K. Singh ◽  
Satoko Hansman ◽  
Stefan Jennewein ◽  
...  

Histo-blood group antigens (HBGAs) are important binding factors for norovirus infections. We show that two human milk oligosaccharides, 2′-fucosyllactose (2′FL) and 3-fucosyllactose (3FL), could block norovirus from binding to surrogate HBGA samples. We found that 2′FL and 3FL bound at the equivalent HBGA pockets on the norovirus capsid using X-ray crystallography. Our data revealed that 2′FL and 3FL structurally mimic HBGAs. These results suggest that 2′FL and 3FL might act as naturally occurring decoys in humans.


2007 ◽  
Vol 64 (1) ◽  
pp. 204-213 ◽  
Author(s):  
Mark Bartlam ◽  
Xiaoyu Xue ◽  
Zihe Rao

The 2003 outbreak of severe acute respiratory syndrome (SARS), caused by a previously unknown coronavirus called SARS-CoV, had profound social and economic impacts worldwide. Since then, structure–function studies of SARS-CoV proteins have provided a wealth of information that increases our understanding of the underlying mechanisms of SARS. While no effective therapy is currently available, considerable efforts have been made to develop vaccines and drugs to prevent SARS-CoV infection. In this review, some of the notable achievements made by SARS structural biology projects worldwide are examined and strategies for therapeutic intervention are discussed based on available SARS-CoV protein structures. To date, 12 structures have been determined by X-ray crystallography or NMR from the 28 proteins encoded by SARS-CoV. One key protein, the SARS-CoV main protease (Mpro), has been the focus of considerable structure-based drug discovery efforts. This article highlights the importance of structural biology and shows that structures for drug design can be rapidly determined in the event of an emerging infectious disease.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit K. Gandhi ◽  
Zhen-Yu J. Sun ◽  
Walter M. Kim ◽  
Yu-Hwa Huang ◽  
Yasuyuki Kondo ◽  
...  

AbstractHuman (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC′ face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance. From these studies, we describe hCEACAM1 homodimeric, monomeric and transition states at atomic resolution and its conformational behavior in solution through NMR assignment of the wildtype (WT) hCEACAM1 IgV dimer and N97A mutant monomer. These studies reveal the flexibility of the GFCC’ face and its important role in governing the formation of hCEACAM1 dimers and selective heterodimers.


2021 ◽  
Author(s):  
Geqing Wang ◽  
Biswaranjan Mohanty ◽  
Martin Williams ◽  
Bradley Doak ◽  
Rabeb Dhouib ◽  
...  

DsbA enzymes catalyze oxidative folding of proteins that are secreted into the periplasm of Gram-negative bacteria, and they are indispensable for the virulence of human pathogens such as Vibrio cholerae and Escherichia coli. Therefore, targeting DsbA represents an attractive approach to control bacterial virulence. X-ray crystal structures reveal that DsbA enzymes share a similar fold, however, the hydrophobic groove adjacent to the active site, which is implicated in substrate binding, is shorter and flatter in the structure of V. cholerae DsbA (VcDsbA) compared to E. coli DsbA (EcDsbA). The flat and largely featureless nature of this hydrophobic groove is challenging for the development of small molecule inhibitors. Using fragment-based screening approaches, we have identified a novel small molecule, based on the benzimidazole scaffold, that binds to the hydrophobic groove of oxidized VcDsbA with a KD of 446 ± 10 µM. The same benzimidazole compound has ~8-fold selectivity for VcDsbA over EcDsbA and binds to oxidized EcDsbA, with KD > 3.5 mM. We generated a model of the benzimidazole complex with VcDsbA using NMR data but were unable to determine the structure of the benzimidazole bound EcDsbA using either NMR or X-ray crystallography. Therefore, a structural basis for the observed selectivity is unclear. To better understand ligand binding to these two enzymes we crystallized each of them in complex with a known ligand, the bile salt sodium taurocholate. The crystal structures show that taurocholate adopts different binding poses in complex with VcDsbA and EcDsbA, and reveals the protein-ligand interactions that stabilize the different modes of binding. This work highlights the capacity of fragment-based drug discovery to identify inhibitors of challenging protein targets. In addition, it provides a starting point for development of more potent and specific VcDsbA inhibitors that act through a novel anti-virulence mechanism.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mark F. Mabanglo ◽  
Elisa Leung ◽  
Siavash Vahidi ◽  
Thiago V. Seraphim ◽  
Bryan T. Eger ◽  
...  

Abstract Bacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in Neisseria meningitidis and Escherichia coli ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering. ACP1 and ADEP induce distinct conformational changes in the ClpP structure. However, reorganization of electrostatic interaction networks at the ClpP entrance pores is necessary and sufficient for activation. Further activation is achieved by formation of ordered N-terminal axial loops and reduction in the structural heterogeneity of the ClpP cylinder. Activating mutations recapitulate the structural effects of small molecule activator binding. Our data, together with previous findings, provide a structural basis for a unified mechanism of compound-based ClpP activation.


Sign in / Sign up

Export Citation Format

Share Document