scholarly journals Polystyrene grafted carbon black synthesis via in situ solution radical polymerization in ionic liquid

2013 ◽  
Vol 20 (6) ◽  
Author(s):  
Xueli Wu ◽  
Jianhui Qiu ◽  
Peng Liu ◽  
Eiichi Sakai ◽  
Lin Lei
2007 ◽  
Vol 107 (5) ◽  
pp. 3300-3305 ◽  
Author(s):  
Jun Ueda ◽  
Hiroshi Yamaguchi ◽  
Kumi Shirai ◽  
Takeshi Yamauchi ◽  
Norio Tsubokawa

2022 ◽  
Author(s):  
Yamei Han ◽  
Shan Wang ◽  
Yijie Liu ◽  
Ligai Bai ◽  
Hongyuan Yan ◽  
...  

In this paper, a poly (ionic liquid@MOF) composite monolithic column was prepared by in situ radical polymerization using ionic liquid (1-allyl-3-methylimidazolium hexafluorophosphate) and MOF (derivatized UIO66-2COOH) as copolymer monomers. The...


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21207-21215
Author(s):  
Paidi Murali Krishna ◽  
Veerababu Polisetti ◽  
Krishnaiah Damarla ◽  
Subir Kumar Mandal ◽  
Arvind Kumar

In this study, a water-miscible ionic liquid (IL), 1-ethyl-3-methylimidazoliumacetate ([EMIM][Ac]), has been used for lipid extraction from marine diatoms Thalassiosira lundiana CSIR-CSMCRI 001 by following a non-polar solvent partition method.


2021 ◽  
Author(s):  
Yuqiu Chen ◽  
Nipun Garg ◽  
Hao Luo ◽  
Georgios M. Kontogeorgis ◽  
John M. Woodley

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 474
Author(s):  
Ioannis S. Tsagkalias ◽  
Alexandra Loukidi ◽  
Stella Chatzimichailidou ◽  
Constantinos E. Salmas ◽  
Aris E. Giannakas ◽  
...  

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.


Sign in / Sign up

Export Citation Format

Share Document