Mechanical and barrier properties of LLDPE/TPS/OMMT packaging film in the presence of POE-g-IA or POE-g-MA

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Amir Kazemi ◽  
Saied Nouri Khorasani ◽  
Mohammad Dinari ◽  
Shahla Khalili
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1780
Author(s):  
Shunli Chen ◽  
Min Wu ◽  
Caixia Wang ◽  
Shun Yan ◽  
Peng Lu ◽  
...  

The use of advanced and eco-friendly materials has become a trend in the field of food packaging. Cellulose nanofibrils (CNFs) were prepared from bleached bagasse pulp board by a mechanical grinding method and were used to enhance the properties of a chitosan/oregano essential oil (OEO) biocomposite packaging film. The growth inhibition rate of the developed films with 2% (w/w) OEO against E. coli and L. monocytogenes reached 99%. With the increased levels of added CNFs, the fibrous network structure of the films became more obvious, as was determined by SEM and the formation of strong hydrogen bonds between CNFs and chitosan was observed in FTIR spectra, while the XRD pattern suggested that the strength of diffraction peaks and crystallinity of the films slightly increased. The addition of 20% CNFs contributed to an oxygen-transmission rate reduction of 5.96 cc/m2·day and water vapor transmission rate reduction of 741.49 g/m2·day. However, the increase in CNFs contents did not significantly improve the barrier properties of the film. The addition of 60% CNFs significantly improved the barrier properties of the film to light and exhibited the lowest light transmittance (28.53%) at 600 nm. Addition of CNFs to the chitosan/OEO film significantly improved tensile strength and the addition of 60% CNFs contributed to an increase of 16.80 MPa in tensile strength. The developed chitosan/oregano essential oil/CNFs biocomposite film with favorable properties and antibacterial activity can be used as a green, functional material in the food-packaging field. It has the potential to improve food quality and extend food shelf life.


2018 ◽  
Author(s):  
Assifa Rahma Khoirunnisa ◽  
I Made Joni ◽  
Camellia Panatarani ◽  
Emma Rochima ◽  
Danar Praseptiangga

2014 ◽  
Vol 108 ◽  
pp. 151-157 ◽  
Author(s):  
Patrizia Cinelli ◽  
Markus Schmid ◽  
Elodie Bugnicourt ◽  
Jessica Wildner ◽  
Agostino Bazzichi ◽  
...  

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
Tristan M. Reyes ◽  
Hunter R. Smith ◽  
Madison P. Wagoner ◽  
Barney S. Wilborn ◽  
Tom Bonner ◽  
...  

With current meat industry efforts focused on improving environmental influencers, adopting sustainable packaging materials may be an easier transition to addressing the sustainability demands of the meat consumer. With the growing popularity of vacuum-packaged meat products, the current study evaluated instrumental surface color on fresh ground beef using vacuum packaging films, recycle-ready film (RRF), standard barrier (STB) and enhanced barrier (ENB). Ground beef packaged using ENB barrier film was lighter (L*), redder (a*) and more vivid (chroma) than all other packaging treatments during the simulated display period (p < 0.05). By day 12 of the simulated retail display, the ground beef surface color became lighter (L*), more yellow (b*), less red (a*), less vivid (chroma) and contained greater forms of calculated metmyoglobin, oxymyoglobin (p < 0.05). The current results suggest that barrier properties of vacuum packaging film for ground beef are pivotal for extending the surface color during fresh shelf-life conditions.


Author(s):  
P Threepopnatkul ◽  
K Wongsuton ◽  
C Jaiaue ◽  
N Rakkietwinai ◽  
C Kulsetthanchalee

2020 ◽  
Vol 98 ◽  
pp. 105251 ◽  
Author(s):  
Lele Cao ◽  
Tingting Ge ◽  
Fansong Meng ◽  
Shiyu Xu ◽  
Jian Li ◽  
...  

Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


Sign in / Sign up

Export Citation Format

Share Document