Synthesis, characterization and rheological properties of copolymer based on poly (para-isobutyl-N-Phenethyl acrylamide -Acrylamide) with drilling mud

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Firas Jameel Jabbar
2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


2004 ◽  
Vol 126 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Yunxu Zhou ◽  
Subhash N. Shah

The rheological properties and friction pressure losses of several common well-drilling, completion, and stimulation fluids have been investigated experimentally. These fluids include polymeric fluids—Xanthan gum, partially hydrolyzed polyacrylamide (PHPA), guar gum, and hydroxyethyl cellulose (HEC), bentonite drilling mud, oil-based drilling mud, and guar-based fracturing slurries. Rheological measurements using a Bohlin CS 50 rheometer and a model 35 Fann viscometer showed that these fluids exhibit shear thinning and thermal thinning behavior except the bentonite drilling mud whose viscosity increased as the temperature was raised. Flow experiments using a full-scale coiled tubing test facility showed that the friction pressure loss in coiled tubing is significantly higher than in straight tubing. Since the polymeric fluids displayed drag reducing property, their drag reduction behavior in straight and coiled tubings was analyzed and compared. Plots of drag reduction vs. generalized Reynolds number indicate that the drag reduction in coiled tubing was not affected by polymer concentration as much as in straight tubing. The onsets of turbulence and drag reduction in coiled tubing were significantly delayed as compared with straight tubing. The effect of solids content on the friction pressure losses in coiled tubing is also briefly discussed.


1983 ◽  
Vol 23 (01) ◽  
pp. 11-20 ◽  
Author(s):  
Syed M. Hussaini ◽  
Jamal J. Azar

Abstract Experiments are conducted with actual drilling muds to study the behavior of drilled cuttings in a vertical annulus. The effect of parameters such as particle size, flow rate, apparent viscosity, and yield point to plastic viscosity ratio on mud-carrying capacity are studied. The applicability of a semiempirical transport model developed by Zeidler also is investigated. It has been shown that in vertical annuluses, the fluid annular velocity has a major effect on the carrying capacity of muds, while the other parameters have an effect only at low to medium fluid annular velocities. We also conclude that Zeidler's semiempirical formulations for the prediction of drilled cuttings behavior are valid with certain limitations. Introduction One of the most important functions of a drilling fluid is to transpose the drilled particles (cuttings) generated by the drill bit to the surface through the wellbore annulus. This commonly is called the "carrying capacity" of drilling mud. Factors affecting the ability of drilling muds to lift cuttings arefluid rheological properties and flow rate,particle settling velocities,particle size and size distribution, geometry, orientation, and concentration,penetration rate of drill bits,rotary speed of drillstring,fluid density.annulus inclination, anddrillpipe position in the wellbore (eccentricity) and axially varying flow geometry. With the advent of deeper drilling and better bit designs, the demand for expending most of the energy at the bit has made it necessary to minimize the pressure losses in the annulus. These pressure losses depend on the fluid velocity, fluid density, and particle concentration. By control of these factors, pressure losses can be minimized. The particle slip velocity is an important factor and is defined as the velocity at which a particle tends to settle in a fluid because of is own weight. The velocity depends on the particle size, its geometry, its specific weight, and fluid rheological properties. The carrying capacity of muds also is affected by the velocity profile in the annulus. With all these variables acting simultaneously, the determination of carrying capacity of a mud becomes a complicated problem. An optimal drilling fluid is expected to lift the cuttings from the wellbore, suspend them when circulation is stopped, and drop them at the surface. Failure to achieve this performance often leads to problems that are costly and performance often leads to problems that are costly and time-consuming to solve. To avoid such problems, the previously mentioned parameters are to be considered in previously mentioned parameters are to be considered in the design of an optimal drilling fluid. Previous Investigations Previous Investigations SPEJ P. 11


2019 ◽  
Author(s):  
Olanari Inemugha ◽  
Franklin Chukwuma ◽  
Onyewuchi Akaranta ◽  
Joseph A. Ajienka

Sign in / Sign up

Export Citation Format

Share Document