scholarly journals Rheological Properties of Drilling Mud Consist of CMC Which is Made by Carton Waste and Chemical Additive of Na2CO3 for Reducing Lost Circulation

Author(s):  
Novia Rita ◽  
Idham Khalid ◽  
Muhammad Ridho Efras
2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


2004 ◽  
Vol 126 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Yunxu Zhou ◽  
Subhash N. Shah

The rheological properties and friction pressure losses of several common well-drilling, completion, and stimulation fluids have been investigated experimentally. These fluids include polymeric fluids—Xanthan gum, partially hydrolyzed polyacrylamide (PHPA), guar gum, and hydroxyethyl cellulose (HEC), bentonite drilling mud, oil-based drilling mud, and guar-based fracturing slurries. Rheological measurements using a Bohlin CS 50 rheometer and a model 35 Fann viscometer showed that these fluids exhibit shear thinning and thermal thinning behavior except the bentonite drilling mud whose viscosity increased as the temperature was raised. Flow experiments using a full-scale coiled tubing test facility showed that the friction pressure loss in coiled tubing is significantly higher than in straight tubing. Since the polymeric fluids displayed drag reducing property, their drag reduction behavior in straight and coiled tubings was analyzed and compared. Plots of drag reduction vs. generalized Reynolds number indicate that the drag reduction in coiled tubing was not affected by polymer concentration as much as in straight tubing. The onsets of turbulence and drag reduction in coiled tubing were significantly delayed as compared with straight tubing. The effect of solids content on the friction pressure losses in coiled tubing is also briefly discussed.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Chinedum Peter Ezeakacha ◽  
Saeed Salehi

Drilling mud loss in highly porous media and fractured formations has been one of the industry's focuses in the past decades. Wellbore dynamics and lithology complexities continue to push for more research into accurate quantification and mitigation strategies for lost circulation and mud filtration. Conventional methods of characterizing mud loss with filtration data for field application can be time-consuming, particularly because of the interaction between several factors that impact mud loss and filtration. This paper presents a holistic engineering approach for characterizing lost circulation using pore-scale dynamic water-based mud (WBM) filtration data. The approaches used in this study include: factorial design of experiment (DoE), hypothesis testing, analysis of variance (ANOVA), and multiple regression analysis. The results show that an increase in temperature and rotary speed can increase dynamic mud filtration significantly. An increase in lost circulation material (LCM) concentration showed a significant decrease dynamic mud filtration. A combination of LCM concentration and rotary speed showed a significant decrease in dynamic mud filtration, while a combination of LCM concentration and temperature revealed a significant increase in dynamic mud filtration. Rotary speed and temperature combination showed an increase in dynamic mud filtration. The combined effect of these three factors was not significant in increasing or decreasing dynamic mud filtration. For the experimental conditions in this study, the regression analysis for one of the rocks showed that dynamic mud filtration can be predicted from changes in LCM concentration and rotary speed. The results and approach from this study can provide reliable information for drilling fluids design and selecting operating conditions for field application.


Sign in / Sign up

Export Citation Format

Share Document