The ambient gamma dose-rate and the inventory of fission products estimations with the soil samples collected at Canadian embassy in Tokyo during Fukushima nuclear accident

2012 ◽  
Vol 296 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Weihua Zhang ◽  
Judah Friese ◽  
Kurt Ungar
2020 ◽  
Vol 190 (2) ◽  
pp. 185-192
Author(s):  
C G Poojitha ◽  
B K Sahoo ◽  
K E Ganesh ◽  
T S Pranesha ◽  
B K Sapra

Abstract In this paper, we intend to evaluate the rate of radon and thoron exhalation from soil with reference to the underlying bedrock and gamma dose rate in the environment of elevated granitic hill—Nandi hills of Karnataka. The measurement of exhalation rates for all the soil samples collected from study area was carried out using a continuous radon–thoron monitor (Smart RnDuo monitor). The surface exhalation rate of thoron from soil samples were found to vary from 4160 ± 326 to 21 822 ± 634 mBq m−2 s−1. The mass exhalation rate of radon from soil samples were found to vary from 76 ± 6 to 269 ± 19 mBq kg−1 h−1. Concentrations of radon activity measurements were carried out for all the groundwater samples from study area. A detailed analysis along with physicochemical parameters of water has been made and discussed in this research paper.


Author(s):  
Xiaobing Geng ◽  
Mei Xu ◽  
Lijun Zhang ◽  
Biao Yuan

An inverse source estimation method is proposed to reconstruct emission rates of multi-radionuclides using local gamma dose rate measurements under the data assimilation framework. It involves the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational data assimilation (PODEn4DVar) algorithm and a transfer coefficient matrix (TCM) created using FLEXPART, a Lagrangian atmospheric dispersion model. PODEn4DVar is a hybrid data assimilation method that exploits the strengths of both the ensemble Kalman filter (EnKF) and the 4DVar assimilation method. With an explicit expression of control (state) variables in the cost functional, the data assimilation process is substantially simplified than traditional 4D variational method. By setting a unit emission rate and running the ATDM model (FLEXPART in this article) driven by meteorological fields forecasted with WRF, we get the transfer coefficient matrix with the progression of nuclear accident. TCM not only acts as observation operator in PODEn4DVar, but also eliminates the control run in traditional data assimilation framework. The method is tested by twin experiments with ratios of nuclides assumed to be known. With pseudo observations based on Fukushima Daiichi nuclear power plant (FDNPP) accident, most of the emission rates were estimated accurately, except under conditions when wind blew off land toward the sea and at extremely slow wind speeds near the FDNPP. Because of the long duration of accident and variability of meteorological fields, measurements from land only in local area is unable to offer enough information to support emergency response. With abundant measurements of gamma dose rate, emission rates can be reconstructed sequentially with the progression of nuclear accident. Therefore, the proposed method has the potential to be applied to nuclear emergency response after improvement.


2020 ◽  
Vol 192 (6) ◽  
Author(s):  
Rosario R. Encabo ◽  
Paolo Tristan F. Cruz ◽  
Antonio C. Bonga ◽  
Christian L. Dela Sada ◽  
Vanessa J. Omandam ◽  
...  

2020 ◽  
Vol 108 (11) ◽  
pp. 913-921
Author(s):  
Nesli Bingöldağ ◽  
Pelin Otansev

AbstractThe concentrations of 226Ra, 232Th, 40K and 137Cs radionuclides in soil samples collected from 323 different regions of Nevşehir province were determined by using a gamma spectrometer with an HPGe detector. The mean gamma activity concentrations (ranges) of 226Ra, 232Th, 40K and 137Cs for districts were determined as 49.45 (7.40–193.90), 54.08 (<2.8–122.50), 698.43 (37.67–1370.20) and 8.26 (0.10–52.60) Bq kg−1, respectively. The mean activity concentrations of 226Ra, 232Th and 40K were higher than the world mean value. According to Kolmogorov–Smirnov test, distributions of 226Ra, 232Th and 137Cs show log-normal distributions. Whereas, 40K shows normal distribution. The mean radium equivalent activity was 181.68 Bq kg−1 which is lower than the recommended maximum value of 370 Bq kg−1. The mean external terrestrial gamma dose rate was found to be 85.12 nGy h−1. The calculated external hazard value was 0.49 and within the acceptable limit which is less than unity (Hex ≤ 1). Thermo Scientific RadEye NBR detector was used to determine environmental gamma dose rates. The gamma dose rates were measured at 445 points at a height of 1 m from land surface. The mean outdoor gamma dose rate (range) was found as 150.13 (50–480) nGy h−1. This mean value was found higher than world mean value. The fact that most of the Nevşehir province is based on volcanic rocks explains why the gamma dose rates are high.


2020 ◽  
Vol 108 (7) ◽  
pp. 573-579 ◽  
Author(s):  
Aslı Kurnaz ◽  
Şeref Turhan ◽  
Aybaba Hançerlioğulları ◽  
Elif Gören ◽  
Muhammet Karataşlı ◽  
...  

AbstractIn this study, content of natural radionuclides (226Ra, 232Th and 40K) and radon emanating power and radon mass exhalation rate of surface soil samples collected around industrial province Karabük in which the first iron steel plant was built in 1937 were determined by high-resolution γ-ray spectrometry with a high purity germanium detector. The average activity concentration of 226Ra, 232Th and 40K in soil samples were measured as 30 ± 2, 28 ± 2 and 251 ± 20 Bq kg−1, respectively. The average value of radon emanating power and mass exhalation rate of soil samples were found as 31 % and 19 μBq kg−l s−l, respectively. Assessment of possible radiation hazards to the people due to external exposure was done by estimating the outdoor absorbed gamma dose rate in the air at 1 m above the soil, the corresponding annual effective dose, and the excess lifetime cancer risk. The average outdoor gamma dose rate, annual effective dose, and lifetime cancer risk were estimated as 41 nGy h−1, 51 μSv y−1 and 2.0 × 10−4, respectively. A comparison of the activity and radiological results obtained for the studied samples with the corresponding worldwide average values indicates that the results are below the world average values.


2016 ◽  
Vol 31 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Senada Avdic ◽  
Beco Pehlivanovic ◽  
Mersad Music ◽  
Alma Osmanovic

This paper deals with correlation analysis of gamma dose rate measured in the test field with the five distinctive soil samples from a few minefields in Federation of Bosnia and Herzegovina. The measurements of ambient dose equivalent rate, due to radionuclides present in each of the soil samples, were performed by the RADIAGEMTM 2000 portable survey meter, placed on the ground and 1m above the ground. The gamma spectrometric analysis of the same soil samples was carried out by GAMMA-RAD5 spectrometer. This study showed that there is a high correlation between the absorbed dose rate evaluated from soil radioactivity and the corresponding results obtained by the survey meter placed on the ground. Correlation analysis indicated that the survey meter, due to its narrow energy range, is not suitable for the examination of cosmic radiation contribution.


2019 ◽  
Vol 184 (3-4) ◽  
pp. 510-513
Author(s):  
Y Omori ◽  
S Inoue ◽  
T Otsuka ◽  
Y Nagamatsu ◽  
A Sorimachi ◽  
...  

Abstract In the present study, variations in ambient gamma dose rate associated with snow cover were examined in a radioactive-contaminated site in Fukushima Prefecture, Japan. The ambient gamma dose rates decreased with increasing snow depth. The reduction trends were different between fresh snow (0.1–0.2 g/cm3) and granular snow (0.3–0.4 g/cm3) depending on snow density. Snow cover water content (snow water equivalent) calculated from snow depth and density was a key parameter governing the reduction in the ambient gamma dose rate. The ambient gamma dose rates reduced to 0.6 and 0.5 at 4 g/cm2 and 8 g/cm2 of snow water equivalent, respectively. Based on gamma-ray flux density distributions, the ambient gamma dose rates from the primary gamma rays decreased more compared to those from scattered gamma rays due to snow cover.


Sign in / Sign up

Export Citation Format

Share Document