Energy-dependent characteristics of prompt neutron anisotropic emission by 244Cm and 240Pu according to Monte Carlo simulations

Author(s):  
Seonkwang Yoon ◽  
Hee Seo ◽  
Young-Su Kim ◽  
Chaehun Lee ◽  
Ho-Dong Kim
Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06097
Author(s):  
Michaella Morphis ◽  
Johan A. van Staden ◽  
Hanlie du Raan ◽  
Michael Ljungberg

1998 ◽  
Vol 512 ◽  
Author(s):  
B. E. Foutz ◽  
S. K. O'Leary ◽  
M. S. Shur ◽  
L. F. Eastman

ABSTRACTThe energy dependent momentum and energy relaxation times, and the effective single valley energy dependent effective mass, are extracted from Monte Carlo simulations of gallium nitride, indium nitride, and aluminum nitride. A simple semi-analytical energy model, which uses these dependencies, is in good agreement with the results of transient Monte Carlo simulations. Both the Monte Carlo and the semi-analytical simulations show that the overshoot effects are most pronounced when the electric field abruptly changes from a value below a critical field to one above. This is attributed to the relatively large difference between the effective energy and momentum relaxation times for such a variation of electric field. Our calculations indicate that gallium nitride and indium nitride should have the most pronounced transient effects. A calculation of the transit times as a function of the gate length shows that an upper bound for the maximum expected cut-off frequencies are 260 GHz and 440 GHz for 0.2 μm gallium nitride and indium nitride field effect transistors, respectively.


1993 ◽  
Vol 306 ◽  
Author(s):  
L. E. Ocola ◽  
F. Cerrina

AbstractThe study of photoelectron effects in X-ray Lithography motivates the need for modeling codes to simulate these effects to have an estimate of the influence of x-ray generated photoelectrons in the exposure of resists. We have performed a series of Monte Carlo simulations to study the spatial distribution of photoelectrons in a resist, PMMA, and parametrized this distribution with a set of energy-dependent gaussians for monochromatic X-rays within an energy range of 0.5 KeV to 2.5 KeV. We discuss the effects of the the redistribution of the photoelectron kinetic energy as a function of the electrons generated by the x-ray absorption in various atomic species.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document