Thermodynamics of molecular complexation of glycyl–glycyl–glycine with cryptand [2.2.2] in water–dimethylsulfoxide solvent at 298.15 K

2016 ◽  
Vol 126 (1) ◽  
pp. 307-314 ◽  
Author(s):  
T. R. Usacheva ◽  
L. Pham Thi ◽  
I. V. Terekhova ◽  
R. S. Kumeev ◽  
V. A. Sharnin
Author(s):  
Justin Kai-Chi Lau ◽  
Francis Esuon ◽  
Giel Berden ◽  
Jos Oomens ◽  
Alan C. Hopkinson ◽  
...  

2006 ◽  
Vol 78 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Kevin Murtagh ◽  
Brian A. Sweetman ◽  
Patrick J. Guiry

The synthesis of new tridentate, isoquinoline-derived ligands, involving successive Suzuki cross-coupling reactions, is described. We were able to resolve 1-[3-(2-hydroxy-phenyl)-isoquinolin-1-yl]-naphthalen-2-ol via molecular complexation with N-benzylcinchonidinium chloride, whereas 1,3-bis(2-hydroxy-naphthalen-1-yl)-isoquinoline was resolved by chromatographic separation of its epimeric camphorsulfonates. Their barrier to rotation about the central biaryl axis was evaluated via racemization studies. Application of enantiopure 1,3-bis(2-hydroxynaphthalen-1-yl)-isoquinoline in the addition of diethylzinc to aldehydes proceeded in moderate yield but without asymmetric induction. A new tridentate ligand, 4-tert-butyl-2-chloro-6-[1-(2-hydroxymethyl-naphthalen-1-yl)-isoquinolin-3-yl]-phenol, was prepared in good yield and resolved by semipreparative high-performance liquid chromatography (HPLC). Its application in the addition of diethylzinc to a range of aromatic aldehydes proceeded in near perfect enantioselectivities at low ligand loadings of 1 mol %.


2004 ◽  
Vol 53 (6) ◽  
pp. 313-317 ◽  
Author(s):  
Takashi ARIMURA ◽  
Takuya NISHIOKA ◽  
Seiji IDE ◽  
Satoshi KUMAMOTO ◽  
Shigeo MURATA ◽  
...  

Author(s):  
Bruce C. Bunker ◽  
William H. Casey

Nature is capable of building magnificently intricate and detailed structures out of otherwise boring materials such as calcium carbonate and silica. Anyone who has taken their children to see dinosaurs at a Natural History museum or visited natural wonders such as the Petrified Forest in Arizona are familiar with the natural process called fossilization by which the tissues of dead organisms are eventually replicated by objects of stone. Most living organisms (including humans) are critically dependent on more deliberate and controlled biomineralization phenomena that lead to the production of all hard tissues, including our teeth and bones, seashells and diatom skeletons, egg shells, and the magnetic nanoparticles that provide homing devices from bacteria to birds. All these processes are nothing more than specific examples of highly controlled nucleation and growth phenomena such as those described in generic terms in Chapter 7. At a molecular level, these processes are controlled by the same reaction mechanisms involving oxide surfaces, which were outlined in Chapter 6. However, biomineralization is orders of magnitude more sophisticated than standard nucleation and growth processes. The unique features of biomineralization involve the interplay between organic biomolecules and the nucleation and growth of inorganic phases such as oxides. This interplay is of critical importance in both biology and emerging nanotechnologies, providing specific examples that illustrate many of the concepts of oxide chemistry introduced in Chapters 5 through 7. In this chapter, we highlight the key concepts of biomineralization and provide examples of how researchers can now produce complex nanostructured oxides via biomimetic nucleation and growth strategies that replicate some of the key features used to make hard tissues in living systems. These strategies include the use of (1) molecular complexation and compartmentalization to control supersaturation levels, (2) specific ligands and surface structures to mediate nucleation phenomena, (3) hierarchical self-assembled organic architectures as templates for oxide formation, (4) functionalization to stimulate desired heterogeneous nucleation and growth processes on those templates, and (5) organic surfactants to manipulate both crystal-phase preferences and growth habits.


1976 ◽  
Vol 231 (1) ◽  
pp. 87-92 ◽  
Author(s):  
C Arvanitakis ◽  
J Ruhlen ◽  
J Folscroft ◽  
JB Rhodes

Intestinal digestion of two tripeptides (leucyl-glycyl-glycine, prolyl-glycyl-glycine) and two disacchrarides (sucrose, maltose) was examined in the hamster by intestinal perfusion in vivo and hydrolysis of the substrates by microvillus membranes. Perfusion studies showed that luminal disappearance rates of leucyl-glycl-glycine were significantly higher than prolyl-glycyl-glycine (P less than o.001), sucrose (P less than 0.001), and maltose (P less than 0.005). Hydrolytic products of leucyl-glycyl-glycine, sucrose, and maltose were detected in the gut lumen in appreciable concentrations, whereas negligible concentrations of prolyl-glycyl-glycine products were present. Leucyl-glycyl-glycine hydrolysis in microvillus membranes was markedly higher than prolyl-glycyl-glycine (P less than 0.001), which was predominant in the cytoplasmic fraction. These results indicate that leucyl-glycyl-glycine, like sucrose and maltose, is hydrolyzed at the membrane. With some tripeptides, i.e., leucyl-glycyl-glycine, digestion occurs at the microvillus membrane with subsequent transport of hydrolytic products into the intestinal epithelial cell. Other tripeptides, i.e., prolyl-glycyl-glycine, may cross the membrane and undergo intracellular hydrolysis by cytoplasmic peptidases.


Sign in / Sign up

Export Citation Format

Share Document