l-asparaginase: Need for an Expedition from an Enzymatic Molecule to Antimicrobial Drug

Author(s):  
Archana Vimal ◽  
Awanish Kumar
Keyword(s):  
2020 ◽  
Vol 16 ◽  
Author(s):  
Nidhi Srivastava ◽  
Indira P. Sarethy

Aims: Characterization of antimicrobial metabolites of novel Streptomyces sp. UK-238. Background: Novel antimicrobial drug discovery is urgently needed due to emerging multi antimicrobial drug resistance among pathogens. Since many years, natural products have provided the basic skeletons for many therapeutic compounds including antibiotics. Bioprospection of un/under explored habitats and focussing on selective isolation of actinobacteria as major reservoir of bio and chemodiversity has yielded good results. Objective: The main objectives of the study were the identification of UK-238 by 16S rDNA sequencing and antimicrobial metabolite fingerprinting of culture extracts. Method: In the present study, a promising isolate, UK-238, has been screened for antimicrobial activity and metabolite fingerprinting from the Himalayan Thano Reserve forest. It was identified by 16S rDNA sequencing. Ethyl acetate extract was partially purified by column chromatography. The pooled active fractions were fingerprinted by GC-MS and compounds were tentatively identified by collated data analysis based on Similarity Index, observed Retention Index from Databases and calculated Retention Index. Results: UK-238 was identified as Streptomyces sp. with 98.4% similarity to S. niveiscabiei. It exhibited broad-spectrum antibacterial and antifungal activity. GC-MS analysis of active fractions of ethyl acetate extract showed the presence of eighteen novel antimicrobial compounds belonging to four major categories- alcohols, alkaloid, esters and peptide. Conclusion: The study confirms that bioprospection of underexplored habitats can elaborate novel bio and chemodiversity.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 886
Author(s):  
Youngbeom Ahn ◽  
Ji Young Jung ◽  
Ohgew Kweon ◽  
Brian T. Veach ◽  
Sangeeta Khare ◽  
...  

Studying potential dietary exposure to antimicrobial drug residues via meat and dairy products is essential to ensure human health and consumer safety. When studying how antimicrobial residues in food impact the development of antimicrobial drug resistance and disrupt normal bacteria community structure in the intestine, there are diverse methodological challenges to overcome. In this study, traditional cultures and molecular analysis techniques were used to determine the effects of tetracycline at chronic subinhibitory exposure levels on human intestinal microbiota using an in vitro continuous flow bioreactor. Six bioreactor culture vessels containing human fecal suspensions were maintained at 37 °C for 7 days. After a steady state was achieved, the suspensions were dosed with 0, 0.015, 0.15, 1.5, 15, or 150 µg/mL tetracycline, respectively. Exposure to 150 µg/mL tetracycline resulted in a decrease of total anaerobic bacteria from 1.9 × 107 ± 0.3 × 107 down to 2 × 106 ± 0.8 × 106 CFU/mL. Dose-dependent effects of tetracycline were noted for perturbations of tetB and tetD gene expression and changes in acetate and propionate concentrations. Although no-observed-adverse-effect concentrations differed, depending on the traditional cultures and the molecular analysis techniques used, this in vitro continuous flow bioreactor study contributes to the knowledge base regarding the impact of chronic exposure of tetracycline on human intestinal microbiota.


1985 ◽  
Vol 144 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Hiroyasu Shimada ◽  
Yutaka Ebine ◽  
Toshiyuki Sato ◽  
Yumiko Kurosawa ◽  
Tatsuo Arauchi

1990 ◽  
Vol 22 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Ali A. Farhoudi-Moghaddam ◽  
Mohammad Katouli ◽  
Anis Jafari ◽  
Mohammad A. Bahavar ◽  
Mostafa Parsi ◽  
...  

Author(s):  
Robert Goggs ◽  
Julie M. Menard ◽  
Craig Altier ◽  
Kevin J. Cummings ◽  
Megan E. Jacob ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document