Viscosity Solutions for the One-Body Liouville Equation in Yang–Mills Charged Bianchi Models with Non-Zero Mass

2015 ◽  
Vol 105 (9) ◽  
pp. 1289-1299 ◽  
Author(s):  
Raoul Domingo Ayissi ◽  
Norbert Noutchegueme ◽  
Remy Magloire Etoua ◽  
Hugues Paulin Mbeutcha Tchagna
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
J.M. Drummond ◽  
H. Paul

Abstract We consider α′ corrections to the one-loop four-point correlator of the stress- tensor multiplets in $$ \mathcal{N} $$ N = 4 super Yang-Mills at order 1/N4. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on AdS5 × S5. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in α′ not considered before.


1993 ◽  
Vol 03 (06) ◽  
pp. 759-788 ◽  
Author(s):  
F. JOCHMANN

The existence of a global weak solution of the one-dimensional hydrodynamic model for semiconductors is proved by the method of artificial viscosity and the theory of compensated compactness. The system is first regularized and global viscosity-solutions are constructed. Letting the viscosity-parameter tend to zero, we obtain a sequence of viscosity-solutions converging in L∞-weak* to a weak solution of the one-dimensional p-system from isoentropic gas dynamics with an electric field term and momentum relaxation. Since the equations are nonlinear and the convergence is only weak, the theory of Young-measures and compensated compactness is applied to obtain a weak solution of the limit problem.


2004 ◽  
Vol 19 (25) ◽  
pp. 4231-4249 ◽  
Author(s):  
A. A. BICHL ◽  
M. ERTL ◽  
A. GERHOLD ◽  
J. M. GRIMSTRUP ◽  
L. POPP ◽  
...  

The quantization of the noncommutative [Formula: see text], U(1) super-Yang–Mills action is performed in the superfield formalism. We calculate the one-loop corrections to the self-energy of the vector superfield. Although the power-counting theorem predicts quadratic ultraviolet and infrared divergences, there are actually only logarithmic UV and IR divergences, which is a crucial feature of noncommutative supersymmetric field theories.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1237
Author(s):  
Dmitry Antonov

We present an analytic calculation of the paramagnetic and diamagnetic contributions to the one-loop effective action in the SU(2) Higgs model. The paramagnetic contribution is produced by the gauge boson, while the diamagnetic contribution is produced by the gauge boson and the ghost. In the limit, where these particles are massless, the standard result of - 12 for the ratio of the paramagnetic to the diamagnetic contribution is reproduced. If the mass of the gauge boson and the ghost become much larger than the inverse vacuum correlation lengths of the Yang–Mills vacuum, the value of the ratio goes to - 8 . We also find that the same values of the ratio are achieved in the deconfinement phase of the model, up to the temperatures at which the dimensional reduction occurs.


2018 ◽  
Vol 175 ◽  
pp. 11014
Author(s):  
Kenji Hieda ◽  
Aya Kasai ◽  
Hiroki Makino ◽  
Hiroshi Suzuki

The gradient flow [1–5] gives rise to a versatile method to construct renor-malized composite operators in a regularization-independent manner. By adopting this method, the authors of Refs. [6–9] obtained the expression of Noether currents on the lattice in the cases where the associated symmetries are broken by lattice regularization. We apply the same method to the Noether current associated with supersymmetry, i.e., the supercurrent. We consider the 4D N = 1 super Yang–Mills theory and calculate the renormalized supercurrent in the one-loop level in the Wess–Zumino gauge. We then re-express this supercurrent in terms of the flowed gauge and flowed gaugino fields [10].


1991 ◽  
Vol 06 (24) ◽  
pp. 2217-2227
Author(s):  
R. B. MANN ◽  
T. RUDY

Using Leibbrandt's general prescription for regularizing (n · q)−1 poles in momentum intergrals in axial-type non-covariant gauges we show that the difference between two linearly divergent integrals which arise in such gauges yield a surface term which is logarithmically divergent. The form of divergence of this term is shown to be independent of the choice of non-covariant gauge. We show that such a term modifies the expression for the one-loop Yang–Mills self-energy evaluated using a cutoff scheme of adding to it a divergent part.


2010 ◽  
Vol 25 (08) ◽  
pp. 627-639
Author(s):  
ZHIFENG XIE

In planar [Formula: see text] supersymmetric Yang–Mills theory we have studied one kind of (locally) BPS Wilson loops composed of a large number of light-like segments, i.e. null zig-zags. These contours oscillate around smooth underlying spacelike paths. At one-loop in perturbation theory, we have compared the finite part of the expectation value of null zig-zags to the finite part of the expectation value of non-scalar-coupled Wilson loops whose contours are the underlying smooth spacelike paths. In arXiv:0710.1060 [hep-th] it was argued that these quantities are equal for the case of a rectangular Wilson loop. Here we present a modest extension of this result to zig-zags of circular shape and zig-zags following non-parallel, disconnected line segments and show analytically that the one-loop finite part is indeed that given by the smooth spacelike Wilson loop without coupling to scalars which the zig-zag contour approximates. We make some comments regarding the generalization to arbitrary shapes.


Sign in / Sign up

Export Citation Format

Share Document