divergent part
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 0)

MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 77-84
Author(s):  
P. L. KULKARNI ◽  
D. R. TALWALKAR ◽  
S. NAIR

A scheme is formulated for the use of OLR data in the estimation of vertical velocity; divergence and then the divergent part of the wind over Indian region. In this scheme, ascending motion over cloudy region is estimated from an empirical relation between the cloud top temperature and descending motion over cloud-free region is estimated from the thermodynamic energy equation and both are blended. From this blended vertical velocity field, aivergence, velocity potential and divergent winds at all standard levels from 4 to 8 July 1979 at 00 UTC are computed. These fields are compared with satellite cloud pictures, rainfall etc and they are found to be realistic in depicting the synoptic conditions. Total wind is computed as the sum of the estimated divergent component and rotational component computed from observed wind field. For assessment of the scheme, this total wind field at 850 hPa is used as initial. guess field in univariate optimum interpolation scheme and analyses were made for the period 4 to 8 July 1979. Results show that scheme is able to produce realistic analyses which included divergent part of the wind.


MAUSAM ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 21-28
Author(s):  
P. L. KULKARNI ◽  
D. R. TALWALKAR ◽  
SATHY NAIR ◽  
S. G. NARKHEDKAR ◽  
S. RAJAMANI

In the present study, kinematic divergence computed using ECMWF grid point data at 850 hPa  is enhanced by  using the relationship between OLR and divergence. This new enhanced divergence is used to  compute the velocity potential and then, the divergence part of the wind is obtained from velocity potetial. To obtain the rotational part of wind, we computed the vorticity from wind data, and subsequently stream function and obtained and the rotational part of the wind from the stream function. The total wind is the combination of divergent part obtained from modified velocity potential (using OLR data) and rotational part from unmodified stream function. This total wind field is used as initial guess for univariate objective analysis by optimum interpolation scheme so that Initial Guess field contained the more realistic divergent part of the wind. Consequently, the analysed field also will contain the divergent part of the wind.


2021 ◽  
Vol 136 (5) ◽  
Author(s):  
Roberto Niardi ◽  
Giampiero Esposito ◽  
Francesco Tramontano

AbstractIn this paper the Feynman Green function for Maxwell’s theory in curved space-time is studied by using the Fock–Schwinger–DeWitt asymptotic expansion; the point-splitting method is then applied, since it is a valuable tool for regularizing divergent observables. Among these, the stress-energy tensor is expressed in terms of second covariant derivatives of the Hadamard Green function, which is also closely linked to the effective action; therefore one obtains a series expansion for the stress-energy tensor. Its divergent part can be isolated, and a concise formula is here obtained: by dimensional analysis and combinatorics, there are two kinds of terms: quadratic in curvature tensors (Riemann, Ricci tensors and scalar curvature) and linear in their second covariant derivatives. This formula holds for every space-time metric; it is made even more explicit in the physically relevant particular cases of Ricci-flat and maximally symmetric spaces, and fully evaluated for some examples of physical interest: Kerr and Schwarzschild metrics and de Sitter space-time.


Author(s):  
I. A. Shershan ◽  
T. V. Shishkina

. The problem of real bremsstrahlung calculation is considered using the modern methods of regularization of divergencies. In particular, we calculate soft photon bremsstrahlung in the most general form using the method of dimensional regularization of infrared divergences. The general calculation algorithm of hard photon bremsstrahlung is described. It is shown that the contribution of hard bremsstrahlung can be separated into the finite and divergent parts. The divergent part can be factorized with the contribution of the initial process in the Born approximation. It is shown that a good choice of kinematic variables makes an analytic covariant calculation of the divergent part of the hard bremsstrahlung possible. In a particular case, an algorithm for determining the kinematic constraints on the invariants is described. A numerical analysis of the radiative corrections for gauge bosons production processes in the case of electron-photon collisions is performed. It is discovered that the contribution of the finite part of bremsstrahlung at high collision energies reaches 20 per cent and must be taken into account in calculations of radiative corrections. The results obtained can be used in various calculations, including covariant ones, performed in the context of confirmation of the Standard Model theoretical predictions or searching for manifestations of alternative gauge models.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Ahmad Ghodsi ◽  
Saeed Qolibikloo ◽  
Saman Karimi

AbstractIn the context of CA conjecture for holographic complexity, we study the action growth rate at late time approximation for general quadratic curvature theory of gravity. We show how the Lloyd’s bound saturates for charged and neutral black hole solutions. We observe that a second singular point may modify the action growth rate to a value other than the Lloyd’s bound. Moreover, we find the universal terms that appear in the divergent part of complexity from computing the bulk and joint terms on a regulated WDW patch.


2020 ◽  
Vol 50 (2) ◽  
pp. 531-534
Author(s):  
Theodore S. Durland ◽  
J. Thomas Farrar

AbstractLonguet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.


2019 ◽  
Vol 128 ◽  
pp. 07005
Author(s):  
Piotr Łapka ◽  
Miroslaw Seredyński ◽  
Andrzej Grzebielec ◽  
Adam Szelagowski ◽  
Mateusz Śmiechowicz ◽  
...  

In this paper analysis of influence of the nozzle shape on the flash boiling phenomena is presented. The mixture model was applied to account for two-phase flow through the nozzle. The ZwartGerber-B lamri model was used to describe the dynamics of the water-vapor phase change process, with the relationship linking the saturation pressure and temperature of the fluid. The effect of the shape of the nozzle on the mass flow rate of the two-phase mixture was numerically investigated by considering thestepwise and conical geometry of its divergent part. At first analysis of the influence of grid size as well as the ways of turbulence and near wall region modelling on the mass flow rate of two-phase mixture were studied for the diameter of nozzle neck of 0.42 mm. Predictions were found independent onthese factors. Then simulations were carried out for three nozzle neck diameters (i.e., 0.62, 0.72 and 0.82 mm) and for several pressures (i.e., from 5 to 7 bar) and undercoolings (i.e., from 1 to 50 K)of water at the inlet. The shape of divergent part of the nozzle was found to not have effect on the mass flow rate of flashing water flowing through nozzle.


Author(s):  
E.I. Jassim

In the present study, a numerical simulation is conducted to predict the influence of convergent-divergent nozzle geometry and NPR on the skin friction and shockwave location. Various shapes of nozzles are numerically simulated using the Computational Fluid Dynamics code. The shock position is examined to demonstrate the impact of nozzle shape on its location. Skin friction is shown to be smoothly decreasing at the divergent part of the nozzle for all NPRs lower than 2.0. However, an inverse behavioural trend was observed at NPR equal to 2. This could be attributed to the fact that the large disturbance of fluid near the wall is the major factor behind such an oddity. The results also show that the shock position is reliant on the nozzle geometry at certain NPR.


Sign in / Sign up

Export Citation Format

Share Document