Human Homologue of Seta Binding Protein 1 Interacts with Cathepsin B and Participates in TNF-Induced Apoptosis in Ovarian Cancer Cells

2006 ◽  
Vol 292 (1-2) ◽  
pp. 189-195 ◽  
Author(s):  
Jian-Ping Liu ◽  
Nan-Song Liu ◽  
Han-Ying Yuan ◽  
Qian Guo ◽  
Hong Lu ◽  
...  
FEBS Letters ◽  
2005 ◽  
Vol 580 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Jianping Liu ◽  
Qian Guo ◽  
Buxin Chen ◽  
Yao Yu ◽  
Hong Lu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1579 ◽  
Author(s):  
Haizhi Huang ◽  
Allen Y. Chen ◽  
Xingqian Ye ◽  
Rongfa Guan ◽  
Gary O. Rankin ◽  
...  

Among women worldwide, ovarian cancer is one of the most dangerous cancers. Patients undergoing platinum-based chemotherapy might get adverse side effects and develop resistance to drugs. In recent years, natural compounds have aroused growing attention in cancer treatment. Galangin inhibited the growth of two cell lines, A2780/CP70 and OVCAR-3, more strongly than the growth of a normal ovarian cell line, IOSE 364. The IC50 values of galangin on proliferation of A2780/CP70, OVCAR-3 and IOSE 364 cells were 42.3, 34.5, and 131.3 μM, respectively. Flow cytometry analysis indicated that galangin preferentially induced apoptosis in both ovarian cancer cells with respect to normal ovarian cells. Galangin treatment increased the level of cleaved caspase-3 and -7 via the p53-dependent intrinsic apoptotic pathway by up-regulating Bax protein and via the p53-dependent extrinsic apoptotic pathway by up-regulating DR5 protein. By down-regulating the level of p53 with 20 μM pifithrin-α (PFT-α), the apoptotic rates of OVCAR-3 cells induced by galangin treatment (40 μM) were significantly decreased from 18.2% to 10.2%, indicating that p53 is a key regulatory protein in galangin-induced apoptosis in ovarian cancer cells. Although galangin up-regulated the expression of p21, it had little effect on the cell cycle of the two ovarian cancer cell lines. Furthermore, the levels of phosphorylated Akt and phosphorylated p70S6K were decreased through galangin treatment, suggesting that the Akt/p70S6K pathways might be involved in the apoptosis. Our results suggested that galangin is selective against cancer cells and can be used for the treatment of platinum-resistant ovarian cancers in humans.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 207 ◽  
Author(s):  
Yi-Yue Wang ◽  
Jun Hyeok Kwak ◽  
Kyung-Tae Lee ◽  
Tsegaye Deyou ◽  
Young Pyo Jang ◽  
...  

The seeds of Millettia ferruginea are used in fishing, pesticides, and folk medicine in Ethiopia. Here, the anti-cancer effects of isoflavones isolated from M. ferruginea were evaluated in human ovarian cancer cells. We found that isoflavone ferrugone and 6,7-dimethoxy-3’,4’-methylenedioxy-8-(3,3-dimethylallyl)isoflavone (DMI) had potent cytotoxic effects on human ovarian cancer cell A2780 and SKOV3. Ferrugone and DMI treatment increased the sub-G1 cell population in a dose-dependent manner in A2780 cells. The cytotoxic activity of ferrugone and DMI was associated with the induction of apoptosis, as shown by an increase in annexin V-positive cells. Z-VAD-fmk, a broad-spectrum caspase inhibitor, and z-DEVD-fmk, a caspase-3 inhibitor, significantly reversed both the ferrugone and DMI-induced apoptosis, suggesting that cell death stimulated by the isoflavones is mediated by caspase-3-dependent apoptosis. Additionally, ferrugone-induced apoptosis was found to be caspase-8-dependent, while DMI-induced apoptosis was caspase-9-dependent. Notably, DMI, but not ferrugone, increased the intracellular levels of reactive oxygen species (ROS), and antioxidant N-acetyl-L-cysteine (NAC) attenuated the pro-apoptotic activity of DMI. These data suggest that DMI induced apoptotic cell death through the intrinsic pathway via ROS production, while ferrugone stimulated the extrinsic pathway in human ovarian cancer cells.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769430 ◽  
Author(s):  
Zhenhua Du ◽  
Xianqun Sha

Curcumin is a natural agent that has ability to dampen tumor cells’ growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells’ malignant progress via up-regulating miR-551a.


2016 ◽  
Vol 11 (3) ◽  
pp. 1943-1947 ◽  
Author(s):  
LINGFANG XIA ◽  
HAO WEN ◽  
XIAOTIAN HAN ◽  
JIA TANG ◽  
YAN HUANG

2016 ◽  
Vol 17 (3) ◽  
pp. 187-197 ◽  
Author(s):  
Wei Chen ◽  
Wenshu Zeng ◽  
Xiaodi Li ◽  
Weiliang Xiong ◽  
Mengdie Zhang ◽  
...  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13563-e13563
Author(s):  
Dennis C. DeSimone ◽  
Trung T. Nguyen ◽  
Eugen Brailiou ◽  
John C. Taylor ◽  
Gabriela Cristina Brailoiu ◽  
...  

e13563 Background: Most ovarian cancer patients are treated with platinum-based chemotherapy but eventually relapse with incurable disease. The G protein-coupled estrogen receptor GPER (GPR30) mediates Ca2+ mobilization in response to estrogen and G-1, a synthetic agonist. Large and sustained Ca2+ responses can lead to mitochondrial Ca2+ overload and apoptosis. Hence, we evaluated whether G-1 could induce apoptosis in cisplatin-sensitive A2780 and isogenic cisplatin–resistant CP70 (14-fold resistant), C30 (70-fold resistant) and C200 (157-fold resistant) human ovarian cancer cells. Bcl-2 and Bcl-xL protect mitochondria from Ca2+overload, and were overexpressed in these cisplatin-resistant cells; thus we also examined combining the Bcl-2 family inhibitor navitoclax with G-1. Methods: Cytoplasmic [Ca2+]c and mitochondrial [Ca2+]m were monitored using microscopy and fluorescent Ca2+ probes. Cell cycle, apoptosis and mitochondrial membrane potential (MMP) were assessed by flow cytometry of propidium iodide, Annexin V and DiIC1(5) -stained cells. The intracellular Ca2+ chelator BAPTA was used to block Ca2+mobilization. Results: Expression of the 53kDa GPER but not the 38 kDa isoform progressively increased with increasing cisplatin resistance. G-1 elicited sustained [Ca2+]c rises that correlated with 53 kDa GPER expression, followed by rises in [Ca2+]m. In all cells, 2.5 μM G-1 blocked cell cycle progression at G2/M, inhibited proliferation, and induced apoptosis (A2780 > C30 > CP70 ≥ C200). G-1 induced p53, caspase-3 and PARP cleavage, and MMP loss. BAPTA prevented G-1’s cell cycle and apoptotic effects in cells showing large Ca2+ mobilization responses but did not in cells with small Ca2+responses. Combining navitoclax with G-1 superadditively decreased cell viability and increased apoptosis. Conclusions: G-1 blocked cell cycle progression and induced apoptosis via a Ca2+-dependent pathway in cells expressing high 53 kDa GPER levels, but via a Ca2+-independent pathway in cells with low 53 kDa GPER expression. G-1 also interacted cooperatively with naviticlax. Therefore, G-1 plus navitoclax shows potential for therapeutic use in platinum-sensitive and -resistant ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document