Dynamic behavior of thermoelastic solid continua using mathematical model derived based on non-classical continuum mechanics with internal rotations

Meccanica ◽  
2020 ◽  
Author(s):  
K. S. Surana ◽  
C. H. Carranza
1970 ◽  
Vol 37 (4) ◽  
pp. 895-900 ◽  
Author(s):  
H. J. Davies ◽  
G. A. Poland

The regimes of flow governing the dynamic behavior of a two-dimensional mathematical model of an edge-jet Hovercraft in heaving motion are described and the equations associated with such regimes derived. Both the free and forced-oscillation characteristics are studied. The nonlinear nature of the system manifests itself, in the case of the forced oscillations, as a shift in the dynamic equilibrium position resulting in a loss of mean hoverheight.


Author(s):  
A. Y Kuzyshyn ◽  
S. A Kostritsia ◽  
Yu. H Sobolevska ◽  
А. V Batih

Purpose. Taking into account the production and commissioning of modern high-speed rolling stock, the authors are aimed to analyze the currently created mathematical models describing the dynamic behavior of the air spring, systematize them and consider the advantages and disadvantages of each model type. Methodology. For the analysis, a comparative chronological method was used, which makes it possible to trace the development of several points of view, concepts, theories. In accordance with the adopted decision equations, the existing models of air springs were divided into three groups: mechanical, thermodynamic and finite-elements. When analyzing mathematical models, the influence of a number of parameters on the dynamic behavior of the air spring, such as disturbing force frequency, heat transfer, nonlinear characteristics of materials, the shape of the membrane, etc., was considered. Findings. A feature of mechanical models is the determination of input parameters based on the analysis of experimental results, requires access to complex measuring equipment and must be performed for each new model of an air spring separately. Unlike mechanical models, which allow taking into account the damping effect of an air spring in the horizontal and vertical direction, thermodynamic models are mainly focused on studying the dynamic behavior of an air spring in the vertical direction. The use of the finite element method makes it possible to most accurately reproduce the dynamic behavior of an air spring, however, it requires significant expenditures of time and effort to create a finite element model and perform calculations. Originality. Mathematical models of the dynamic behavior of an air spring are systematized, and the importance of their study in conjunction with a spatial mathematical model of high-speed rolling stock is emphasized. Practical value. The analysis of the mathematical models of the dynamic behavior of the air spring shows the ways of their further improvement, indicates the possibility of their use in the spatial mathematical model of the rolling stock in accordance with the tasks set. It will allow, even at the design stage of high-speed rolling stock, to evaluate its dynamic characteristic and traffic safety indicators when interacting with a railway track.


2002 ◽  
Vol 128 (3) ◽  
pp. 506-517 ◽  
Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A high-fidelity real-time simulation code based on a lumped, nonlinear representation of gas turbine components is presented. The code is a general-purpose simulation software environment useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of gas turbine engines. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft aero-derivative industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4583
Author(s):  
Shailendra Rajput ◽  
Alon Kuperman ◽  
Asher Yahalom ◽  
Moshe Averbukh

The specific power storage capabilities of double-layer ultracapacitors are receiving significant attention from engineers and scientific researchers. Nevertheless, their dynamic behavior should be studied to improve the performance and for efficient applications in electrical devices. This article presents an infinite resistor–capacitor (r–C) chain-based mathematical model for the analysis of double layer ultracapacitors. The internal resistance and capacitance were measured for repetitive charging and discharging cycles. The magnitudes of internal resistance and capacitance showed approximately ±10% changes for charge-discharge processes. Electrochemical impedance spectroscopy investigations revealed that the impedance of a double-layer ultracapacitor does not change significantly in the temperature range of (−30 °C to +30 °C) and voltage range of (0.3376–2.736 V). The analysis of impedance data using the proposed mathematical model showed good agreement between the experimental and theoretical data. The dynamic behavior of the ultracapacitor was successfully represented by utilizing the proposed infinite r–C chains equivalent circuit, and the reverse Fourier transform analysis. The r–C electrical equivalent circuit was also analyzed using the PSIM simulation software to study the dynamic behavior of ultracapacitor parameters. The simulation study yields an excellent agreement between the experimental and calculated voltage characteristics for repetitive charging-discharging processes.


Author(s):  
M. Rezaee ◽  
H. Fekrmandi

Carbon nanotubes (CNTs) are expected to have significant impact on several emerging nanoelectromechanical (NEMS) applications. Vigorous understanding of the dynamic behavior of CNTs is essential for designing novel nanodevices. Recent literature show an increased utilization of models based on elastic continuum mechanics theories for studying the vibration behavior of CNTs. The importance of the continuum models stems from two points; (i) continuum simulations consume much less computational effort than the molecular dynamics simulations, and (ii) predicting nanostructures behavior through continuum simulation is much cheaper than studying their behavior through experimental verification. In numerous recent papers, CNTs were assumed to behave as perfectly straight beams or straight cylindrical shells. However, images taken by transmission electron microscopes for CNTs show that these tiny structures are not usually straight, but rather have certain degree of curvature or waviness along the nanotubes length. The curved morphology is due to process-induced waviness during manufacturing processes, in addition to mechanical properties such as low bending stiffness and large aspect ratio. In this study the free nonlinear oscillations of wavy embedded multi-wall carbon nanotubes (MWCNTs) are investigated. The problem is formulated on the basis of the continuum mechanics theory and the waviness of the MWCNTs is modeled as a sinusoidal curve. The governing equation of motion is derived by using the Hamilton’s principle. The Galerkin approach was utilized to reduce the equation of motion to a second order nonlinear differential equation which involves a quadratic nonlinear term due to the curved geometry of the beam, and a cubic nonlinear term due to the stretching effect. The system response has been obtained using the incremental harmonic balanced method (IHBM). Using this method, the iterative relations describing the interaction between the amplitude and the frequency for the single-wall nanotube and double-wall nanotube are obtained. Also, the influence of the waviness, elastic medium and van der Waals forces on frequency-response curves is researched. Results present some useful information to analyze CNT’s nonlinear dynamic behavior.


Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A novel high-fidelity real-time simulation code based on a lumped, non-linear representation of gas turbine components is presented. The aim of the work is to develop a general-purpose simulation code useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of the gas turbine engine. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


2019 ◽  
Vol 97 ◽  
pp. 05019 ◽  
Author(s):  
Mirziyod Mirsaidov ◽  
Tokhirjon Sultanov ◽  
Javlon Yarashov ◽  
Elyor Toshmatov

This paper presents the results of the assessment and prediction of the dynamic behavior of earth dams of various heights, taking into account large strains (geometric nonlinearity) and inhomogeneous features of structures under multi-component kinematic effects. A mathematical model, methodology and algorithm for estimating dynamic behavior of earth dams taking into account inhomogeneous features of structures and large strains in spatial and plane statements are given. Dynamic behavior of the models of the Pachkamar, Gissarak and Nurek earth dams has been studied taking into account large strains and inhomogeneous features of structures in various pre-resonant and resonant modes under multi-component kinematic effect. A number of new effects associated with the manifestation of large strains in the structure under various dynamic influences are revealed.


Sign in / Sign up

Export Citation Format

Share Document