scholarly journals The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence

2019 ◽  
Vol 29 (3) ◽  
pp. 417-440 ◽  
Author(s):  
David Watson

Abstract Artificial intelligence (AI) has historically been conceptualized in anthropomorphic terms. Some algorithms deploy biomimetic designs in a deliberate attempt to effect a sort of digital isomorphism of the human brain. Others leverage more general learning strategies that happen to coincide with popular theories of cognitive science and social epistemology. In this paper, I challenge the anthropomorphic credentials of the neural network algorithm, whose similarities to human cognition I argue are vastly overstated and narrowly construed. I submit that three alternative supervised learning methods—namely lasso penalties, bagging, and boosting—offer subtler, more interesting analogies to human reasoning as both an individual and a social phenomenon. Despite the temptation to fall back on anthropomorphic tropes when discussing AI, however, I conclude that such rhetoric is at best misleading and at worst downright dangerous. The impulse to humanize algorithms is an obstacle to properly conceptualizing the ethical challenges posed by emerging technologies.

2019 ◽  
Vol 3 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Fazal Noor

Ultrasonic sensors have been used in a variety of applications to measure ranges to objects. Hand gestures via ultrasonic sensors form unique motion patterns for controls. In this research, patterns formed by placing a set of objects in a grid of cells are used for control purposes. A neural network algorithm is implemented on a microcontroller which takes in range signals as inputs read from ultrasonic sensors and classifies them in one of four classes. The neural network is then trained to classify patterns based on objects’ locations in real-time. The testing of the neural network for pattern recognition is performed on a testbed consisting of Inter-Integrated Circuit (I2C) ultrasonic sensors and a microcontroller. The performance of the proposed model is presented and it is observed the model is highly scalable, accurate, robust and reliable for applications requiring high accuracy such as in robotics and artificial intelligence.


2021 ◽  
Author(s):  
Andrea Chatrian ◽  
Richard T. Colling ◽  
Lisa Browning ◽  
Nasullah Khalid Alham ◽  
Korsuk Sirinukunwattana ◽  
...  

AbstractThe use of immunohistochemistry in the reporting of prostate biopsies is an important adjunct when the diagnosis is not definite on haematoxylin and eosin (H&E) morphology alone. The process is however inherently inefficient with delays while waiting for pathologist review to make the request and duplicated effort reviewing a case more than once. In this study, we aimed to capture the workflow implications of immunohistochemistry requests and demonstrate a novel artificial intelligence tool to identify cases in which immunohistochemistry (IHC) is required and generate an automated request. We conducted audits of the workflow for prostate biopsies in order to understand the potential implications of automated immunohistochemistry requesting and collected prospective cases to train a deep neural network algorithm to detect tissue regions that presented ambiguous morphology on whole slide images. These ambiguous foci were selected on the basis of the pathologist requesting immunohistochemistry to aid diagnosis. A gradient boosted trees classifier was then used to make a slide-level prediction based on the outputs of the neural network prediction. The algorithm was trained on annotations of 219 immunohistochemistry-requested and 80 control images, and tested by threefold cross-validation. Validation was conducted on a separate validation dataset of 222 images. Non IHC-requested cases were diagnosed in 17.9 min on average, while IHC-requested cases took 33.4 min over multiple reporting sessions. We estimated 11 min could be saved on average per case by automated IHC requesting, by removing duplication of effort. The tool attained 99% accuracy and 0.99 Area Under the Curve (AUC) on the test data. In the validation, the average agreement with pathologists was 0.81, with a mean AUC of 0.80. We demonstrate the proof-of-principle that an AI tool making automated immunohistochemistry requests could create a significantly leaner workflow and result in pathologist time savings.


2021 ◽  
Author(s):  
Andrea Chatrian ◽  
Richard Colling ◽  
Lisa Browning ◽  
Nasullah Khalid Alham ◽  
Korsuk Sirinukunwattana ◽  
...  

The use of immunohistochemistry in the reporting of prostate biopsies is an important adjunct when the diagnosis is not definite on haematoxylin and eosin (H&E) morphology alone. The process is however inherently inefficient with delays while waiting for pathologist review to make the request and duplicated effort reviewing a case more than once. In this study, we aimed to capture the workflow implications of immunohistochemistry requests and demonstrate a novel artificial intelligence tool to identify cases in which immunohistochemistry (IHC) is required and generate an automated request. We conducted audits of the workflow for prostate biopsies in order to understand the potential implications of automated immunohistochemistry requesting and collected prospective cases to train a deep neural network algorithm to detect tissue regions that presented ambiguous morphology on whole slide images. These ambiguous foci were selected on the basis of the pathologist requesting immunohistochemistry to aid diagnosis. A gradient boosted trees classifier was then used to make a slide level prediction based on the outputs of the neural network prediction. The algorithm was trained on annotations of 219 immunohistochemistry-requested and 80 control images, and tested by 3-fold cross-validation. Validation was conducted on a separate validation dataset of 212 images. Non IHC-requested cases were diagnosed in 17.9 minutes on average, while IHC-requested cases took 33.4 minutes over multiple reporting sessions. We estimated 11 minutes could be saved on average per case by automated IHC requesting, by removing duplication of effort. The tool attained 99% accuracy and 0.99 Area Under the Curve (AUC) on the test data. In the validation, the average agreement with pathologists was 0.81, with a mean AUC of 0.80. We demonstrate the proof-of-principle that an AI tool making automated immunohistochemistry requests could create a significantly leaner workflow and result in pathologist time savings.


2020 ◽  
pp. 1-12
Author(s):  
Haixia Chen

Innovation and entrepreneurship are an important support for social and economic development in the new era, and it is also the key to the cultivation of practical talents in universities. In order to mine the effective information of innovation and entrepreneurship data, based on the neural network algorithm, this paper combines the bat algorithm to construct a data processing model to obtain an artificial intelligence innovation and entrepreneurship system with data analysis capabilities. Moreover, this study combines with actual needs to improve the algorithm, effectively eliminate the noise existing in the data, eliminate the interference of invalid data on the judgment ability of the system model, and choose the best denoising algorithm through comparison and verification of various algorithms. In order to verify the model proposed in this paper, the data is input into this research model by collecting data in a college survey, so as to verify and analyze the performance of the model. The research results show that the artificial intelligence system proposed in this paper has good performance and has certain practical value.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e046265
Author(s):  
Shotaro Doki ◽  
Shinichiro Sasahara ◽  
Daisuke Hori ◽  
Yuichi Oi ◽  
Tsukasa Takahashi ◽  
...  

ObjectivesPsychological distress is a worldwide problem and a serious problem that needs to be addressed in the field of occupational health. This study aimed to use artificial intelligence (AI) to predict psychological distress among workers using sociodemographic, lifestyle and sleep factors, not subjective information such as mood and emotion, and to examine the performance of the AI models through a comparison with psychiatrists.DesignCross-sectional study.SettingWe conducted a survey on psychological distress and living conditions among workers. An AI model for predicting psychological distress was created and then the results were compared in terms of accuracy with predictions made by psychiatrists.ParticipantsAn AI model of the neural network and six psychiatrists.Primary outcomeThe accuracies of the AI model and psychiatrists for predicting psychological distress.MethodsIn total, data from 7251 workers were analysed to predict moderate and severe psychological distress. An AI model of the neural network was created and accuracy, sensitivity and specificity were calculated. Six psychiatrists used the same data as the AI model to predict psychological distress and conduct a comparison with the AI model.ResultsThe accuracies of the AI model and psychiatrists for predicting moderate psychological distress were 65.2% and 64.4%, respectively, showing no significant difference. The accuracies of the AI model and psychiatrists for predicting severe psychological distress were 89.9% and 85.5%, respectively, indicating that the AI model had significantly higher accuracy.ConclusionsA machine learning model was successfully developed to screen workers with depressed mood. The explanatory variables used for the predictions did not directly ask about mood. Therefore, this newly developed model appears to be able to predict psychological distress among workers easily, regardless of their subjective views.


2020 ◽  
pp. 1-12
Author(s):  
Yingli Duan

Curriculum is the basis of vocational training, its development level and teaching efficiency determine the realization of vocational training objectives, as well as the quality and level of major vocational academic training. Therefore, the development of curriculum is an important issue. And affect the school’s teaching capacity building. The analysis of the latest developments in the main courses shows that there are some deviations or irrationalities in the curriculum in some colleges and universities, and the general problems of understanding the latest courses, such as lack of solid foundation in curriculum setting, unclear direction of objectives, unclear reform ideas, inadequate and systematic construction measures, lack of attention to the quality of education. This paper explains the rules for the establishment of first-level courses, clarifies the ideas and priorities of architecture, and explores strategies for building university-level courses using knowledge of artificial intelligence and neural network algorithms in order to gain experience from them.


The objective of this undertaking is to apply neural systems to phishing email recognition and assess the adequacy of this methodology. We structure the list of capabilities, process the phishing dataset, and execute the Neural Network frameworks. we analyze its exhibition against that of other real Artificial Intelligence Techniques – DT , K-nearest , NB and SVM machine.. The equivalent dataset and list of capabilities are utilized in the correlation. From the factual examination, we infer that Neural Networks with a proper number of concealed units can accomplish acceptable precision notwithstanding when the preparation models are rare. Additionally, our element determination is compelling in catching the qualities of phishing messages, as most AI calculations can yield sensible outcomes with it.


Author(s):  
Meghna Babubhai Patel ◽  
Jagruti N. Patel ◽  
Upasana M. Bhilota

ANN can work the way the human brain works and can learn the way we learn. The neural network is this kind of technology that is not an algorithm; it is a network that has weights on it, and you can adjust the weights so that it learns. You teach it through trials. It is a fact that the neural network can operate and improve its performance after “teaching” it, but it needs to undergo some process of learning to acquire information and be familiar with them. Nowadays, the age of smart devices dominates the technological world, and no one can deny their great value and contributions to mankind. A dramatic rise in the platforms, tools, and applications based on machine learning and artificial intelligence has been seen. These technologies not only impacted software and the internet industry but also other verticals such as healthcare, legal, manufacturing, automobile, and agriculture. The chapter shows the importance of latest technology used in ANN and future trends in ANN.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 520
Author(s):  
Peishu Zong ◽  
Yali Zhu ◽  
Huijun Wang ◽  
Duanyang Liu

In this paper, the winter visibility in Jiangsu Province is simulated by WRF-Chem (Weather Research and Forecasting (WRF) model coupled with Chemistry) with high spatiotemporal resolutions. Simulation results show that WRF-Chem has good capability to simulate the visibility and related local meteorological elements and air pollutants in Jiangsu in the winters of 2013–2017. For visibility inversion, this study adopts the neural network algorithm. Meteorological elements, including wind speed, humidity and temperature, are introduced to improve the performance of WRF-Chem relative to the visibility inversion scheme, which is based on the Interagency Monitoring of Protected Visual Environments (IMPROVE) extinction coefficient algorithm. The neural network offers a noticeable improvement relative to the inversion scheme of the IMPROVE visibility extinction coefficient, substantially improving the underestimation of winter visibility in Jiangsu Province. For instance, the correlation coefficient increased from 0.17 to 0.42, and root mean square error decreased from 2.62 to 1.76. The visibility inversion results under different humidity and wind speed levels show that the underestimation of the visibility using the IMPROVE scheme is especially remarkable. However, the underestimation issue is essentially solved using the neural network algorithm. This study serves as a basis for further predicting winter haze events in Jiangsu Province using WRF-Chem and deep-learning methods.


Sign in / Sign up

Export Citation Format

Share Document