A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8

2009 ◽  
Vol 37 (2) ◽  
pp. 839-845 ◽  
Author(s):  
Fabian Schmidt ◽  
Aline Marnef ◽  
Man-Kim Cheung ◽  
Ian Wilson ◽  
John Hancock ◽  
...  
2021 ◽  
Vol 22 (6) ◽  
pp. 3068
Author(s):  
Zaira M. López-Juárez ◽  
Laura Aguilar-Henonin ◽  
Plinio Guzmán

RNA-binding proteins (RBPs) are key elements involved in post-transcriptional regulation. Ataxin-2 (ATXN2) is an evolutionarily conserved RBP protein, whose function has been studied in several model organisms, from Saccharomyces cerevisiae to the Homo sapiens. ATXN2 interacts with poly(A) binding proteins (PABP) and binds to specific sequences at the 3′UTR of target mRNAs to stabilize them. CTC-Interacting Domain3 (CID3) and CID4 are two ATXN2 orthologs present in plant genomes whose function is unknown. In the present study, phenotypical and transcriptome profiling were used to examine the role of CID3 and CID4 in Arabidopsis thaliana. We found that they act redundantly to influence pathways throughout the life cycle. cid3cid4 double mutant showed a delay in flowering time and a reduced rosette size. Transcriptome profiling revealed that key factors that promote floral transition and floral meristem identity were downregulated in cid3cid4 whereas the flowering repressor FLOWERING LOCUS C (FLC) was upregulated. Expression of key factors in the photoperiodic regulation of flowering and circadian clock pathways, were also altered in cid3cid4, as well as the expression of several transcription factors and miRNAs encoding genes involved in leaf growth dynamics. These findings reveal that ATXN2 orthologs may have a role in developmental pathways throughout the life cycle of plants.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


2006 ◽  
Vol 80 (18) ◽  
pp. 9017-9030 ◽  
Author(s):  
Huaxin Si ◽  
Subhash C. Verma ◽  
Erle S. Robertson

ABSTRACT Terminal repeat (TR) elements of Kaposi's sarcoma-associated herpesvirus (KSHV), the potential origin sites of KSHV replication, have been demonstrated to play important roles in viral replication and transcription and are most likely also critical for the segregation of the KSHV genome to daughter cells. To search for the cellular proteins potentially involved in KSHV genome maintenance, we performed affinity chromatography analysis, using KSHV TR DNA as the affinity ligand. Proteomic analysis was then carried out to identify the TR-interacting proteins. We identified a total of 123 proteins from both KSHV-positive and -negative cells, among which most were identified exclusively from KSHV-positive cells. These proteins were categorized as proliferation/cell cycle regulatory proteins, proteins involved in spliceosome components, such as heterogeneous nuclear ribonuclear proteins, the DEAD/H family, the switch/sucrose nonfermenting protein family, splicing factors, RNA binding proteins, transcription regulation proteins, replication factors, modifying enzymes, and a number of proteins that could not be broadly categorized. To support the proteomic results, the presence of four candidate proteins, ATR, BRG1, NPM1 and PARP-1, in the elutions was further characterized in this study. The binding and colocalization of these proteins with the TR were verified using chromatin immunoprecipitation and immunofluorescence in situ hybridization analysis. These newly identified TR binding proteins provide a number of clues and potential links to understanding the mechanisms regulating the replication, transcription, and genome maintenance of KSHV. This study will facilitate the generation and testing of new hypotheses to further our understanding of the mechanisms involved in KSHV persistence and its associated pathogenesis.


2003 ◽  
Vol 4 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Yulan Cheng ◽  
Naohiro Kato ◽  
Wenming Wang ◽  
Junjie Li ◽  
Xuemei Chen

2021 ◽  
Vol 8 ◽  
Author(s):  
Ravi Kumar Alluri ◽  
Zhongwei Li ◽  
Keith R. McCrae

Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.


2020 ◽  
Vol 48 (9) ◽  
pp. 4725-4740 ◽  
Author(s):  
Michael Backlund ◽  
Frank Stein ◽  
Mandy Rettel ◽  
Thomas Schwarzl ◽  
Joel I Perez-Perri ◽  
...  

Abstract Cellular stress causes multifaceted reactions to trigger adaptive responses to environmental cues at all levels of the gene expression pathway. RNA-binding proteins (RBP) are key contributors to stress-induced regulation of RNA fate and function. Here, we uncover the plasticity of the RNA interactome in stressed cells, differentiating between responses in the nucleus and in the cytoplasm. We applied enhanced RNA interactome capture (eRIC) analysis preceded by nucleo-cytoplasmic fractionation following arsenite-induced oxidative stress. The data reveal unexpectedly compartmentalized RNA interactomes and their responses to stress, including differential responses of RBPs in the nucleus versus the cytoplasm, which would have been missed by whole cell analyses.


Sign in / Sign up

Export Citation Format

Share Document