scholarly journals Differential expression of protein disulfide-isomerase A3 isoforms, PDIA3 and PDIA3N, in human prostate cancer cell lines representing different stages of prostate cancer

Author(s):  
Maria Araceli Diaz Cruz ◽  
Sandra Karlsson ◽  
Ferenc Szekeres ◽  
Maria Faresjö ◽  
Dan Lund ◽  
...  

AbstractProstate cancer (PCa) is a highly heterogeneous and unpredictable progressive disease. Sensitivity of PCa cells to androgens play a central role in tumor aggressiveness but biomarkers with high sensitivity and specificity that follow the progression of the disease has not yet been verified. The vitamin D endocrine system and its receptors, the Vitamin D Receptor (VDR) and the Protein Disulfide-Isomerase A3 (PDIA3), are related to anti-tumoral effects as well as carcinogenesis and have therefore been suggested as potential candidates for the prevention and therapy of several cancer forms, including PCa. In this study, we evaluated the mRNA expression of VDR and PDIA3 involved in vitamin D signaling in cell lines representing different stages of PCa (PNT2, P4E6, LNCaP, DU145 and PC3). This study further aimed to evaluate vitamin D receptors and their isoforms as potential markers for clinical diagnosis of PCa. A novel transcript isoform of PDIA3 (PDIA3N) was identified and found to be expressed in all PCa cell lines analyzed. Androgen-independent cell lines showed a higher mRNA expression ratio between PDIA3N/PDIA3 contrary to androgen-dependent cell lines that showed a lower mRNA expression ratio between PDIA3N/PDIA3. The structure of PDIA3N differed from PDIA3. PDIA3N was found to be a N-truncated isoform of PDIA3 and differences in protein structure suggests an altered protein function i.e. cell location, thioredoxin activity and affinity for 1,25(OH)2D3. Collectively, PDIA3 transcript isoforms, the ratio between PDIA3N/PDIA3 and especially PDIA3N, are proposed as candidate markers for future studies with different stages of PCa progression.

2020 ◽  
Vol 63 (18) ◽  
pp. 10263-10286 ◽  
Author(s):  
Andrea Shergalis ◽  
Ding Xue ◽  
Fatma Z. Gharbia ◽  
Hannah Driks ◽  
Binita Shrestha ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1351-1351
Author(s):  
Alexandra Lozano ◽  
Christopher Vega ◽  
Yaritza Inostroza-Nieves ◽  
Lorena Rivera González ◽  
Pablo J. López ◽  
...  

Abstract Activation of the mineralocorticoid receptor (MR), a critical component of the Renin-Angiotensin-Aldosterone (ALDO)-System (RAAS), has been shown to play an important role in inflammatory and vascular endothelial responses in addition to its well-described effects on sodium and water homeostasis. Activationof endothelial cells leads to, among other factors, increased endothelin-1 (ET-1) and protein disulfide isomerase (PDI) release. PDI and ET-1 contribute to vascular inflammation and are increased in patients with SCD and sickle transgenic mouse models. The MR is a member of the steroid family of nuclear receptors and transcription factors that upon activation binds to hormone response elements of edn1, the gene for ET-1, leading to increased ET-1 expression.In vivo, blockade of MR has been shown to reduce circulating ET-1 levels and ET-1 mRNA expression. However, the role of MR in SCD is unclear. We hypothesized that MR blockade in sickle transgenic mice would reduce PDI activity and improve hematological parameters and inflammation. We first studied EA.hy926 (EA) cells, a human endothelial cell line that expresses MR. We incubated EA cells with ALDO (10-8 M), an MR agonist, for 24 hr and observed a rise in PDI mRNA levels by qRT-PCR (P<0.01, n=5), an event that was blocked by pre-incubation of EA cells with 1 μM canrenoic acid (CA), an MR antagonist (P<0.05, n=5). We then measured PDI activity in the supernatant of ALDO-stimulated EA cells using a Di-E-GSSH fluorescent marker and observed a rise in PDI activity following ALDO (10-8 M) when compared to vehicle treatment (P<0.05; n=5). To test the in vivo effects of MR activation, we studied Berkeley Sickle Transgenic (BERK) mice that were randomized to receive either normal rodent chow or chow containing eplerenone (156 mg/kg per day), an MR antagonist (MRA), for 14 days. We observed significantly lower plasma PDI activity in mice treated with MRA than those on regular chow (63.7 ± 8.7 control diet to 47.9 ± 2.4 eplerenone, Relative Fluorescence Units (RFU); P<0.005, n=6 and 9, respectively). Treatment with MRA was associated with reduced plasma ET-1 and myeloperoxidase (MPO) levels in BERK mice. We also studied RBC Gardos channel activity in these mice and observed a significant reduction in clotrimazole-sensitive K+ efflux following MR blockade (2.49±0.5 control and 1.37±0.3 mmol/1013 cells x hr; P<0.04 n= 5 and 7 respectively). Consistent with these results, MR blockade was associated with increases in both erythrocyte MCV (41.3±2.5 vs 47.4±1.1 fL, P<0.03, n=7) and reticulocyte MCV (53.6.3±2.8 vs 60.1±0.6 fL, P<0.02, n=7). We also studied gene expression by qRT-PCR in heart tissue from these mice and observed that MR blockade reduced mRNA expression of: ET-1 (0.654 ± 0.233, P<0.05, n=5 and n=7); PDI (0.546 ± 0.063, P<0.01, n=5 and n=7); and Tumor Necrosis Factor Receptor Superfamily Member 1A mRNA (0.464 ± 0.061, P<0.01, n=5 and n=7). Thus, our results suggest a novel role for RAAS and, in particular, MR activation in SCD. Disclosures No relevant conflicts of interest to declare.


Chemotherapy ◽  
2020 ◽  
pp. 1-9
Author(s):  
Subo Qian ◽  
Shun Zhang ◽  
Yu Wu ◽  
Yu Ding ◽  
Xinyan Li ◽  
...  

<b><i>Background:</i></b> Protein disulfide isomerase 4 (PDIA4) has been reported to be closely associated with chemoresistance in several types of malignancies. But the pathogenic mechanisms of PDIA4 involved in docetaxel (DTX) resistance in prostate cancer (PCa) are still unknown. Hence, this study was conducted to evaluate the potential effect of PDIA4 on chemoresistance to DTX in PCa cells and to investigate the underlying mechanisms. <b><i>Methods:</i></b> Two types of DTX-resistant PCa cells, that is, DTX-resistant PC-3 cells (PC-3/DTXR) and C4-2B cells (C4-2B/DTXR) were developed, as well as the parental PC-3 and C4-2B cells were obtained to investigate these issues. Short hairpin RNAs targeting human PDIA4 to knockdown the expression of PDIA4 or PDIA4-expressing adenoviral vectors to overexpress the PDIA4 were transfected into PCa cells to study the underlying mechanisms of PDIA4 involving in PCa DTX resistance. <b><i>Results:</i></b> Results showed that PDIA4 exhibited a dramatic overexpression in PC-3/DTXR and C4-2B/DTXR cells. Down-regulation of PDIA4 by infecting PC-3/DTXR and C4-2B/DTXR cells with shPDIA4 lentivirus stimulated cell death by prompting apoptosis. Up-regulation of PDIA4 by infecting PC-3 and C4-2B cells with PDIA4-expressing adenovirus showed severer resistance to DTX. In addition, PDIA4 up-regulation induced phosphorylated protein kinase B (Akt) expression, while PDIA4 knockdown significantly inhibited the expression in PCa cells. <b><i>Conclusions:</i></b> Our study indicates that PDIA4 is a negative regulator of PCa cell apoptosis and plays a critical role in PCa DTX resistance by activating the Akt-signaling pathway. Thereby, it implies that targeting PDIA4 could be a potential adjuvant therapeutic approach against DTX resistance in PCa.


2020 ◽  
Author(s):  
Maria Araceli Diaz Cruz ◽  
Sandra Karlsson ◽  
Ferenc Szekeres ◽  
Maria Faresjö ◽  
Dan Lund ◽  
...  

Abstract The authors have withdrawn this preprint due to author disagreement.


2017 ◽  
Vol 8 (10) ◽  
pp. 2335-2346 ◽  
Author(s):  
Duygu Gezen-Ak ◽  
Irem L. Atasoy ◽  
Esin Candaş ◽  
Merve Alaylioglu ◽  
Selma Yılmazer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document