Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells

Author(s):  
Praveen Kumar Issac ◽  
Rupmanjari Karan ◽  
Ajay Guru ◽  
R. Pachaiappan ◽  
Mariadhas Valan Arasu ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ansarullah ◽  
Selvaraj Jayaraman ◽  
Anandwardhan A. Hardikar ◽  
A. V. Ramachandran

Oreocnide integrifolia(OI) leaves are used as folklore medicine by the people of northeast India to alleviate diabetic symptoms. Preliminary studies revealed hypoglycemic and hypolipidemic potentials of the aqueous leaf extract. The present study was carried out to evaluate whether the OI extract induces insulin secretionin vivoandin vitroand also whether it is mediated through the insulin-signaling pathway. The experimental set-up consisted of three groups of C57BL/6J mice strain: (i) control animals fed with standard laboratory diet, (ii) diabetic animals fed with a high-fat diet for 24 weeks and (iii) extract-supplemented animals fed with 3% OI extract along with high-fat diet for 24 weeks. OI-extract supplementation lowered adiposity and plasma glucose and insulin levels. Immunoblot analysis of IRS-1, Akt and Glut-4 protein expressions in muscles of extract-supplemented animals revealed that glucoregulation was mediated through the insulin-signaling pathway. Moreover, immunostaining of pancreas revealed increased insulin immunopositive cells in OI-extract-treated animals. In addition, the insulin secretogogue ability of the OI extract was demonstrated when challenged with high glucose concentration using isolated pancreatic isletsin vitro. Overall, the present study demonstrates the possible mechanism of glucoregulation of OI extract suggestive of its therapeutic potential for the management of diabetes mellitus.


2017 ◽  
Vol 180 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ljubomir Jovanović ◽  
Marija Pantelić ◽  
Radiša Prodanović ◽  
Ivan Vujanac ◽  
Miloje Đurić ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2910
Author(s):  
Dheeraj Kumar Posa ◽  
Shahid P. Baba

Type 2 diabetes (T2D), along with obesity, is one of the leading health problems in the world which causes other systemic diseases, such as cardiovascular diseases and kidney failure. Impairments in glycemic control and insulin resistance plays a pivotal role in the development of diabetes and its complications. Since skeletal muscle constitutes a significant tissue mass of the body, insulin resistance within the muscle is considered to initiate the onset of diet-induced metabolic syndrome. Insulin resistance is associated with impaired glucose uptake, resulting from defective post-receptor insulin responses, decreased glucose transport, impaired glucose phosphorylation, oxidation and glycogen synthesis in the muscle. Although defects in the insulin signaling pathway have been widely studied, the effects of cellular mechanisms activated during metabolic syndrome that cross-talk with insulin responses are not fully elucidated. Numerous reports suggest that pathways such as inflammation, lipid peroxidation products, acidosis and autophagy could cross-talk with insulin-signaling pathway and contribute to diminished insulin responses. Here, we review and discuss the literature about the defects in glycolytic pathway, shift in glucose utilization toward anaerobic glycolysis and change in intracellular pH [pH]i within the skeletal muscle and their contribution towards insulin resistance. We will discuss whether the derangements in pathways, which maintain [pH]i within the skeletal muscle, such as transporters (monocarboxylate transporters 1 and 4) and depletion of intracellular buffers, such as histidyl dipeptides, could lead to decrease in [pH]i and the onset of insulin resistance. Further we will discuss, whether the changes in [pH]i within the skeletal muscle of patients with T2D, could enhance the formation of protein aggregates and activate autophagy. Understanding the mechanisms by which changes in the glycolytic pathway and [pH]i within the muscle, contribute to insulin resistance might help explain the onset of obesity-linked metabolic syndrome. Finally, we will conclude whether correcting the pathways which maintain [pH]i within the skeletal muscle could, in turn, be effective to maintain or restore insulin responses during metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document