Electrical conductivity and dielectric properties of SiO2 nanoparticles dispersed in conducting polymer matrix

2006 ◽  
Vol 9 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Kousik Dutta ◽  
S. K. De
Author(s):  
Nurul Farrahani Azlan ◽  
Suffiyana Akhbar ◽  
Suhaiza Hanim Hanipah ◽  
Rahida Wati Sharudin

Silica dioxide (SiO2) and titanium dioxide (TiO2) are nanoparticle fillers that are widely incorporated into polymer matrix for thermal insulation application. Combination of both fillers in producing polymer nanocomposite is interesting to review. This paper reviews on the current and recent research on the method to incorporate the SiO2/TiO2 nanoparticles as the fillers into various polymer matrix such as direct mixing, intercalation, sol-gel and in situ polymerisation as well as the effect of nanofillers on the thermal properties, morphology studies, rheology behaviour, mechanical property, and conductivity (thermal and electrical) of the SiO2/TiO2 polymer nanocomposites. This paper also reviews the effect of SiO2/TiO2 nanoparticles to the polymer nanocomposites in term of dielectric properties as a potential electrical insulation material. SiO2 nanoparticles presented to be the best filler to enhance the dielectric properties compared to the TiO2. When both of nanofillers are incorporated into the polymer matrix, a better result in term of mechanical, thermal, and electrical insulation properties are produced.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1531-1542
Author(s):  
Y. Marouani ◽  
J. Massoudi ◽  
M. Noumi ◽  
A. Benali ◽  
E. Dhahri ◽  
...  

The hexaferrite Ba1−xSrxFe12O19 compounds with x = 0, 0.5 and 1 were synthesized by the autocombustion method.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1719
Author(s):  
Patryk Fryń ◽  
Sebastian Lalik ◽  
Natalia Górska ◽  
Agnieszka Iwan ◽  
Monika Marzec

The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and β) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials.


2013 ◽  
Vol 706-708 ◽  
pp. 95-98
Author(s):  
Mi Dan Li ◽  
Dong Mei Liu ◽  
Lu Lu Feng ◽  
Huan Niu ◽  
Yao Lu

Polymer matrix composites made from phenolic resin are filled with natural graphite powders. They are fabricated by compression molding technique. The density, electrical conductivity and flexural strength of composite are analyzed to determine the influences of mould pressure and mould pressing time on the physical, electrical and mechanical properties of composite. It is found that the density, electrical conductivity and flexural strength of composites increased with increasing mould pressure. Under pressure of 40 MPa for 60 min, the density, electrical conductivity and flexural strength of composites were 1.85 g/cm3, 4.35  103 S/cm and 70 MPa, respectively. The decreased gaps could be the main reason for the increasing of density, electrical conductivity and flexural strength as mould pressure increases. The results also show that the density of composites increased with increasing mould pressing time.


2021 ◽  
Vol 24 (04) ◽  
pp. 413-418
Author(s):  
O.V. Kovalchuk ◽  
◽  
I.P. Studenyak ◽  
T.M. Kovalchuk ◽  
E.A. Ayryan ◽  
...  

At the temperature 293 K, the influence of two types of nanoimpurities (carbon multiwall nanotubes and C60 fullerene) both separately and together on the dielectric properties of Shell oil transformer oil has been studied. It has been shown that these impurities do not significantly effect on the value of the dielectric permittivity of Shell oil, but more significantly increase its conductivity. It has been found that in the presence of nanotubes inside Shell oil, the dependence of its electrical conductivity on the fullerene concentration is nonmonotonic. The samples with the fullerene concentration 100 ppm have the highest conductivity. At the fullerene concentration 300 ppm, the conductivity of Shell oil with the impurities of carbon nanotube and C60 fullerene becomes almost equal to the electrical conductivity of Shell oil only with the impurities of carbon nanotubes. It has been suggested that C60 fullerene can be used to reduce the electrical conductivity of Shell oil with magnetic nanoparticles required to increase the cooling efficiency of transformers under the action of their own magnetic field.


Author(s):  
S. A. Syrbu ◽  
M. S. Fedorov ◽  
E. A. Lapykina ◽  
V. V. Novikov

Objectives. Our aim was to study the dielectric properties of the 4-n-pentyloxybenzoic acid– N-(4-n-butyloxybenzylidene)-4’-methylaniline system and reveal how different concentrations of N-(4-n-butyloxybenzylidene)-4’-methylaniline additives affect the dielectric properties of 4-n-pentyloxybenzoic acid.Methods. System properties were investigated using polarization thermomicroscopy and dielcometry.Results. We found that dielectric anisotropy changes its sign from positive to negative at the transition temperature of the high-temperature nematic subphase to the low-temperature one. The anisotropy of the dielectric constant of N-4-n-butoxybenzylidene-4’-methylaniline has a positive value and increases as to the system approaches the crystalline phase. The crystal structure of the 4-n-pentyloxybenzoic acid contains dimers formed by two independent molecules due to a pair of hydrogen bonds. The crystal structure of N-(4-n-butoxybenzylidene)-4’-methylaniline contains associates formed by orientational interactions of two independent molecules. 4-n-Pentyloxybenzoic acid dimers (270 nm) and associates of N-4-n-butoxybenzylidene-4’- methylaniline (250 nm) proved to have approximately the identical length. Considering the close length values of the structural units of both compounds and the dielectric anisotropy sign, we assume that the N-4-n-butoxybenzylidene-4’-methylaniline associates are incorporated into the supramolecular structure of the 4-n-pentyloxybenzoic acid. The specific electrical conductivity of the compounds under study lies between 10−7 and 10−12 S∙cm−1. The relationship between the specific electrical conductivity anisotropy and the system composition in the nematic phase at the identical reduced temperature, obtained between 100 and 1000 Hz is symbatic. However, the electrical conductivity anisotropy values of the system obtained at 1000 Hz are lower compared to those obtained at 100 Hz. At N-(4-n-butoxybenzylidene)-4’-methylaniline concentrations between 30 and 60 mol %, the electrical conductivity anisotropy values are higher than those of the individual component.Conclusions. A change in the sign of the dielectric constant anisotropy of the 4-n-pentyloxybenzoic acid during nematic subphase transitions was established. We showed that the system has the highest dielectric constant anisotropy value when components have an equal number of moles. Highest electrical conductivity anisotropy values are observed when the concentration of the N-4-n-butoxybenzylidene-4᾽-methylaniline system lies between 30 and 60 mol %. 


2020 ◽  
Author(s):  
Ryszard Skulski ◽  
Dariusz Bochenek ◽  
Dagmara Brzezińska ◽  
Leszek Stobinski ◽  
Przemysław Niemiec ◽  
...  

Abstract In this paper there is described the technology of obtaining and results of investigations of microstructure, XRD, SEM, main dielectric properties, electrical conductivity measurements and P-E hysteresis loops of Ba0.6Pb0.4TiO3/graphene oxide composite (abbr. BPT/GO). In the final step of technology, the samples have been sintered using the Spark Plasma Sintering (SPS) method. Diffraction patterns of BPT/GO composite exhibit lines which can be related with perovskite structure, as well as reveal additional lines that can be derived from the initial component oxides. Investigations of electrical conductivity suggest that the PTCR effect occurs at temperatures up to about 120°C. Dielectric hysteresis loops below 90°C are wide and typical for materials with rather high electrical conductivity. The hysteresis loop obtained at 120°C is more typical for ferroelectrics. The obtained material is interesting, however it is probably possible to find better conditions of obtaining it and/or a better composition.


2019 ◽  
Vol 14 (30) ◽  
pp. 64-72
Author(s):  
Ahmad A. Hasan

A.C electrical conductivity and dielectric properties for poly(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undopedand doped with multi-walled carbon nanotube (MWCNTs) withdifferent concentrations (1, and 3 wt %) in the frequency range(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)blends undoped and doped with MWCNTs were prepared usingcasting technique. The electrical conductivity measurements showedthat σA.C is frequency dependent and obey the relation σA.C =Aωs forundoped and doped blends with 1% MWCNTs, while it is frequencyindependent with increases of MWCNTs content to 3%. Theexponent s showed proceeding increase with the increase of PEOratio (≥50%) for undoped blends samples, while s value for dopedblends exhibits to change in different manner, i.e. s increases andreach maximum value at 50/50 PVA/PEO, then decreases forresidual doped blends samples with 1% MWCNTs on the other handthe exponent s decrease and reach minimum value at 50/50PVA/PEO for samples doped with 3% MWCNTs, then return toincrease. The results explained in different terms.


Sign in / Sign up

Export Citation Format

Share Document