Effect of hydrocarbon polymer, feed ratio, and interfacial interaction on the liquid exfoliation of graphite

2020 ◽  
Vol 22 (11) ◽  
Author(s):  
Xiaobing Han ◽  
Jie Gao ◽  
Guowen Hu ◽  
Xiuqin Tang ◽  
Tao Chen
2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


1990 ◽  
Vol 55 (5) ◽  
pp. 1143-1148 ◽  
Author(s):  
Jan Kloubek

Results presented for the aliphatic hydrocarbon-water interface show that the recent hypothesis of the free energy minimization called interfacial interaction rule, which was suggested as a theoretical base of the Antonow rule, cannot be generally valid.


2020 ◽  
Vol 60 (2) ◽  
pp. 288
Author(s):  
Qing-Chang Ren ◽  
Jing-Jing Xuan ◽  
Chuan-Yan Che ◽  
Xin-Chao Yan ◽  
Zhong-Ze Hu

In this trial we aimed to assess the effects of dietary supplementation of 4-O-methyl-glucuronoarabinoxylan (4OMG) on growth performance, thigh meat quality and small intestine development of female Partridge-Shank broilers. A total of 240 1-day-old female Partridge-Shank broilers were randomly distributed to four groups with three replicates of 20 within each group. Groups received either 0, 15, 20 or 25 g 4OMG/kg DM of diet. During the whole experiment of 60 days, broilers had ad libitum access to water and feed. At pen level, feed intake was recorded daily and broilers were weighed at the start and end of the experiment. For each group, three pens with a total of 20 broilers were randomly selected to determine the thigh meat quality and the small intestine development of broilers. Broilers fed diets with higher 4OMG had greater final liveweight (P = 0.004), daily bodyweight gain (P = 0.004) and gain-to-feed ratio (P < 0.001), muscle pH values (P = 0.031) and redness (P = 0.001), duodenal weight index (P = 0.042), jejunal (P = 0.043) and ileal length (P = 0.049), duodenal (P < 0.001) and ileal villus height (P = 0.008), but lower percentage of dead birds (P < 0.001), drip loss (P = 0.042) and shear force value (P = 0.043) of the thigh muscles. These results indicate that increasing dietary supplementation of 4OMG may improve growth performance and meat quality of female Partridge-Shank broilers through better development of small intestine.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 422-422
Author(s):  
Rebecca L Moore ◽  
Cierrah J Kassetas ◽  
Leslie A LeKatz ◽  
Bryan W Neville

Abstract One hundred and twenty-six yearling angus steers (initial body weight 445.87 ± 7.13 kg) were utilized in a 2 x 2 factorial design to evaluate the impacts of bunk management and modified distillers grains plus solubles (mDGS) inclusion on feedlot performance, hydrogen sulfide concentrations and blood oxygen saturation. Treatments included bunk management strategy either control bunk management (CON; clean bunks at the time of next day’s feeding) or long bunk management (LONG; feed remaining at time of next day’s feeding), and two inclusion rates of mDGS either 25% or 50% (DM Basis). On d 0, 7, 14, 21, 28 and 35 rumen gas samples were collected via rumenocentesis, and arterial blood samples were collected on two steers from each pen. No differences (P ≥ 0.09) were observed for dry matter intake, average daily gain and gain-to-feed ratio for bunk management or mDGS inclusion. Hot carcass weight, ribeye area, marbling score and quality grade were not affected (P ≥ 0.48) by either bunk management or mDGS inclusion. Back fat was greater (P = 0.04) for CON steers compared to LONG (1.30 vs 1.12 ± 0.05cm, respectively), but was not affected (P = 0.59) by mDGS inclusion. Steers on CON had greater (P = 0.03) yield grades compared to LONG (3.21 vs 2.96 ± 0.11, respectively). Bunk management strategy did not impact hydrogen sulfide concentrations or blood oxygen saturation (P = 0.82). Hydrogen sulfide concentrations increased (P < 0.001) with increasing mDGS inclusion. Blood oxygen saturation was influenced by day of sampling (P = 0.01). Blood oxygen saturation was not affected (P = 0.07) by mDGS inclusion. The fact that ruminal hydrogen sulfide concentrations increased while blood oxygen saturation remained similar raises questions about the quantity of hydrogen sulfide and metabolic fate of excess hydrogen sulfide in the blood of ruminant animals.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuying Yang ◽  
Zhiyan Chen ◽  
Xiangqian Lu ◽  
Xiaotao Hao ◽  
Wei Qin

AbstractThe organic magnetoelectric complexes are beneficial for the development on flexible magnetoelectric devices in the future. In this work, we fabricated all organic multiferroic ferromagnetic/ferroelectric complexes to study magnetoelectric coupling at room temperature. Under the stimulus of external magnetic field, the localization of charge inside organic ferromagnets will be enhanced to affect spin–dipole interaction at organic multiferroic interfaces, where overall ferroelectric polarization is tuned to present an organic magnetoelectric coupling. Moreover, the magnetoelectric coupling of the organic ferromagnetic/ferroelectric complex is tightly dependent on incident light intensity. Decreasing light intensity, the dominated interfacial interaction will switch from spin–dipole to dipole–dipole interaction, which leads to the magnetoelectric coefficient changing from positive to negative in organic multiferroic magnetoelectric complexes.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 286
Author(s):  
Jin Zhang ◽  
Lv Yang ◽  
Yue Wang ◽  
Huaichao Wu ◽  
Jiabin Cai ◽  
...  

Molecular dynamics (MD) simulations were conducted to investigate the interactions between a palygorskite coating and linear chain alkanes (dodecane C12, tetradecane C14, hexadecane C16, and octadecane C18), representing base oils in this study. The simulation models were built by placing the alkane molecules on the surface of the palygorskite coating. These systems were annealed and geometrically optimized to obtain the corresponding stable configurations, followed by the analysis of the structural changes occurring during the MD process. The interfacial interaction energies, mean square displacements, and self-diffusion coefficients of the systems were evaluated to characterize the interactions between base lubricant molecules and palygorskite coating. It was found that the alkanes exhibited self-arrangement ability after equilibrium. The interfacial interaction was attractive, and the electrostatic energy was the main component of the binding energy. The chain length of the linear alkanes had a significant impact on the intensity of the interfacial interactions and the molecular diffusion behavior. Moreover, the C12 molecule exhibited higher self-diffusion coefficient values than C14, C16 and C18. Therefore, it could be the best candidate to form an orderliness and stable lubricant film on the surface of the palygorskite coating. The present work provides new insight into the optimization of the structure and composition of coatings and lubricants, which will guide the experimental development of these systems for practical applications.


Sign in / Sign up

Export Citation Format

Share Document