Hollow mesoporous silica nanoparticles for co-delivery of hydrophobic and hydrophilic molecules: mechanism of drug loading and release

2021 ◽  
Vol 23 (10) ◽  
Author(s):  
Fatemeh Kabiri ◽  
Soroush Mirfakhraee ◽  
Yalda H. Ardakani ◽  
Rassoul Dinarvand
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaodong She ◽  
Lijue Chen ◽  
Chengpeng Li ◽  
Canzhong He ◽  
Li He ◽  
...  

Hollow mesoporous silica nanoparticles were successfully fabricated and functionalized with appropriate silanes. After modifications, amine, carboxyl, cyano, and methyl groups were grafted onto the nanoparticles and all functionalized hollow mesoporous silica nanoparticles maintained a spherical and hollow structure with a mean diameter of ~120 nm and a shell thickness of ~10 nm. The loading capacity of the hollow mesoporous silica nanoaprticles to the anticancer drug, 5-fluorouracil, can be controlled via precise functionalization. The presence of amine groups on the surface of nanoparticles resulted in the highest loading capacity of 28.89%, due to the amine functionalized nanoparticles having a similar hydrophilicity but reverse charge to the drug. In addition, the change in pH leads to the variation of the intensity of electrostatic force between nanoparticles and the drug, which finally affects the loading capacity of amine functionalized hollow mesoporous silica nanoparticles to some extent. Higher drug loading was observed at pH of 7.4 and 8.5 as 5-fluorouracil becomes more deprotonated in alkaline conditions. The improved drug loading capacity by amine functionalized hollow mesoporous silica nanoparticles has demonstrated that they can become potential intracellular 5-fluorouracil delivery vehicles for cancers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1293
Author(s):  
Lanying Guo ◽  
Jiantao Ping ◽  
Jinglei Qin ◽  
Mu Yang ◽  
Xi Wu ◽  
...  

Although hollow mesoporous silica nanoparticles (HMSNs) have been intensively studied as nanocarriers, selecting the right HMSNs for specific drugs still remains challenging due to the enormous diversity in so far reported HMSNs and drugs. To this end, we herein made a comprehensive study on drug loading in HMSNs from the viewpoint of impacting factors and loading efficiency. Specifically, two types of HMSNs with negative and positive zeta potential were delicately constructed, and three categories of drugs were selected as delivery targets: highly hydrophobic and lipophobic (oily), hydrophobic, and hydrophilic. The results indicated that (i) oily drugs could be efficiently loaded into both of the two HMSNs, (ii) HMSNs were not good carriers for hydrophobic drugs, especially for planar drugs, (iii) HMSNs had high loading efficiency towards oppositely charged hydrophilic drugs, i.e., negatively charged HMSNs for cationic molecules and vice versa, (iv) entrapped drugs would alter zeta potential of drug-loaded HMSNs. This work may provide general guidelines about designing high-payload HMSNs by reference to the physicochemical property of drugs.


2020 ◽  
Vol 58 (1) ◽  
pp. 39 ◽  
Author(s):  
Ngoc Tram Nguyen Thi ◽  
Dai Hai Nguyen

Mesoporous silica nanoparticles (MSNs) have attracted significant attention from researchers thanks to their high surface area and pore volume, which can increase drug loading capacity. Moreover, MSNs, with their biocompatibility and ease of surface functionalization, are seen as potential drug delivery system. However, the loading of drug into MSNs system still needs further improvement. In this study, hollow mesoporous silica nanoparticles (HMSNs) were fabricated in order to increase the drug loading capacity of nanosilica materials. The synthesized HMSNs possessed inner hollow cores that could remarkably raise the total pore volume and thus improve the capacity for cargo loading. HMSNs were synthesized according to the hard-template method with three main steps: (1) forming of solid SiO2 nanoparticles as templates, (2) forming of core-shell structure by coating MSN layers onto the templates, and (3) forming of hollow core structure by etching away the solid template. The HMSNs product was characterized by TEM, XRD, TGA and FTIR. In addition, drug loading capacity of the material was evaluated with doxorubicin as model drug. The results indicated remarkable improvement in drug loading capacity, compared to MSN sample. Cell assays on cancer lines showed high biocompatibility. These results demonstrated the potential of HMSNs in the delivery of anticancer agents.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 288 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

There is a need for the improvement of conventional cancer treatment strategies by incorporation of targeted and non-invasive procedures aimed to reduce side-effects, drug resistance, and recurrent metastases. The anti-cancer drug, 5-fluorouracil (5-FU), is linked to a variety of induced-systemic toxicities due to its lack of specificity and potent administration regimens, necessitating the development of delivery vehicles that can enhance its therapeutic potential, while minimizing associated side-effects. Polymeric mesoporous silica nanoparticles (MSNs) have gained popularity as delivery vehicles due to their high loading capacities, biocompatibility, and good pharmacokinetics. MSNs produced in this study were functionalized with the biocompatible polymers, chitosan, and poly(ethylene)glycol to produce monodisperse NPs of 36–65 nm, with a large surface area of 710.36 m2/g, large pore volume, diameter spanning 9.8 nm, and a favorable zeta potential allowing for stability and enhanced uptake of 5-FU. Significant drug loading (0.15–0.18 mg5FU/mgmsn), controlled release profiles (15–65%) over 72 hours, and cell specific cytotoxicity in cancer cells (Caco-2, MCF-7, and HeLa) with reduced cell viability (≥50%) over the non-cancer (HEK293) cells were established. Overall, these 5FU-MSN formulations have been shown to be safe and effective delivery systems in vitro, with potential for in vivo applications.


2015 ◽  
Vol 3 (31) ◽  
pp. 6480-6489 ◽  
Author(s):  
Haijiao Zhang ◽  
Huijuan Xu ◽  
Minghong Wu ◽  
Yufang Zhong ◽  
Donghai Wang ◽  
...  

Novel hollow mesoporous silica nanoparticles (HMSNs) with rough surfaces have been successfully prepared using a facile soft–hard template route.


2017 ◽  
Vol 53 (88) ◽  
pp. 12032-12035 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Qiuyu Qu ◽  
Xiang Cao ◽  
Yanli Zhao

Multifunctional nanocarriers consisting of hollow mesoporous silica nanoparticles loaded with doxorubicin and then capped by a complex between disulfide linked β-cyclodextrin and adamantane functionalized indocyanine dye are developed for improved anticancer efficacy through combined photothermal–chemotherapy.


2018 ◽  
Author(s):  
Wei Chen ◽  
ChiAn Cheng ◽  
Emily Cosco ◽  
Shyam Ramakrishnan ◽  
Jakob Lingg ◽  
...  

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that hollow mesoporous silica nanoparticles (HMSNs) can template the J-aggregation of NIR fluorophore IR-140 to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging <i>in vivo</i>with 980 nm excitation.


Sign in / Sign up

Export Citation Format

Share Document