scholarly journals Seismic bracing performance of plasterboard timber walls

Author(s):  
Angela Liu ◽  
David Carradine

The goal of this study is to develop a racking model of plasterboard-sheathed timber walls as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand. Residential buildings in New Zealand are primarily stand-alone low-rise LTF buildings, and their bracing elements are commonly plasterboard-sheathed LTF walls. It is an essential part of performance-based seismic designs of LTF buildings to be able to simulate the racking performance of plasterboard walls. In this study, racking test results of 12 plasterboard walls were collected and studied to gain insight into the seismic performance of plasterboard-sheathed LTF walls. The racking performance of these walls was examined in terms of stiffness/strength degradation, displacement capacity, superposition applicability and failure mechanisms. Subsequently, a mathematical analysis model for simulating racking performance of LTF plasterboard walls is developed and presented. The developed racking model is a closed-form wall model and could be easily used for conducting three-dimensional non-linear push-over studies of seismic performance of LTF buildings.

Author(s):  
Angela Liu ◽  
Minghao Li ◽  
Roger Shelton

The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timber-framed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plan. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plan) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.


2012 ◽  
Vol 446-449 ◽  
pp. 1922-1926
Author(s):  
Chang Zhi Zhu ◽  
Xing Lian Zheng

Based on a project, a numerical analysis model was established by the finite difference program and the process of the deep excavation and support was simulated by computer, the distribution of the horizontal displacement and settlement of the top of slope of the slope soil were obtained. The simulation result was consistent with the test results. It shows that the method of numerical analysis can be used to the simulation of the excavation and support of Deep Foundation Pit, and it will provide the basis for the design and construction of practice project.


2005 ◽  
Vol 21 (1_suppl) ◽  
pp. 455-468 ◽  
Author(s):  
Sassan Eshghi ◽  
Masoud N. Ahari

An earthquake with a moment magnitude of 6.5 hit the city of Bam in southern Iran at 5:26 am local time, Friday, 26 December 2003. According to the Iranian government's estimate, the earthquake caused more than 43,000 deaths, 30,000 injuries, and left 70,000 people homeless. It caused extensive damage to residential and commercial buildings and emergency response facilities. In contrast to the human loss and suffering and extended building damage, lifeline systems, although damaged, performed much better. Transportation systems and facilities (roads, bridges, railways, and the airport), although slightly to moderately damaged, became generally operational shortly after the earthquake to support emergency response and recovery efforts. The main reason for the good seismic performance of the transportation facilities was that most of them were located outside the zone that was heavily damaged. Another reason was that they were newer facilities and in general, seismic engineering aspects considered in their design and construction were more exact than those in residential buildings in Iran.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijiao Ma ◽  
Shaoqing Zhang ◽  
Jincheng Zhu ◽  
Jingwen Wang ◽  
Junzhen Ren ◽  
...  

AbstractNon-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control.


2021 ◽  
pp. 135910532110299
Author(s):  
Terise Broodryk ◽  
Kealagh Robinson

Although anxiety and worry can motivate engagement with COVID-19 preventative behaviours, people may cognitively reframe these unpleasant emotions, restoring wellbeing at the cost of public health behaviours. New Zealand young adults ( n = 278) experiencing nationwide COVID-19 lockdown reported their worry, anxiety, reappraisal and lockdown compliance. Despite high knowledge of lockdown policies, 92.5% of participants reported one or more policy breaches ( M  = 2.74, SD = 1.86). Counter to predictions, no relationships were found between anxiety or worry with reappraisal or lockdown breaches. Findings highlight the importance of targeting young adults in promoting lockdown compliance and offer further insight into the role of emotion during a pandemic.


2021 ◽  
Vol 13 (13) ◽  
pp. 7327
Author(s):  
Rajesh Singh ◽  
Anita Gehlot ◽  
Shaik Vaseem Akram ◽  
Lovi Raj Gupta ◽  
Manoj Kumar Jena ◽  
...  

The United Nations (UN) 2030 agenda on sustainable development goals (SDGs) encourages us to implement sustainable infrastructure and services for confronting challenges such as large energy consumption, solid waste generation, depletion of water resources and emission of greenhouse gases in the construction industry. Therefore, to overcome challenges and establishing sustainable construction, there is a requirement to integrate information technology with innovative manufacturing processes and materials science. Moreover, the wide implementation of three-dimensional printing (3DP) technology in constructing monuments, artistic objects, and residential buildings has gained attention. The integration of the Internet of Things (IoT), cloud manufacturing (CM), and 3DP allows us to digitalize the construction for providing reliable and digitalized features to the users. In this review article, we discuss the opportunities and challenges of implementing the IoT, CM, and 3D printing (3DP) technologies in building constructions for achieving sustainability. The recent convergence research of cloud development and 3D printing (3DP) are being explored in the article by categorizing them into multiple sections including 3D printing resource access technology, 3D printing cloud platform (3D–PCP) service architectures, 3D printing service optimized configuration technology, 3D printing service evaluation technology, and 3D service control and monitoring technology. This paper also examines and analyzes the limitations of existing research and, moreover, the article provides key recommendations such as automation with robotics, predictive analytics in 3DP, eco-friendly 3DP, and 5G technology-based IoT-based CM for future enhancements.


2020 ◽  
Vol 36 (2_suppl) ◽  
pp. 288-313
Author(s):  
Juan M Mayoral ◽  
Gilberto Mosqueda ◽  
Daniel De La Rosa ◽  
Mauricio Alcaraz

Seismic performance of tunnels during earthquakes in densely populated areas requires assessing complex interactions with existing infrastructure such as bridges, urban overpasses, and metro stations, including low- to medium-rise buildings. This article presents the numerical study of an instrumented tunnel, currently under construction on stiff soils, located in the western part of Mexico City, during the Puebla-Mexico 19 September 2017 earthquake. Three-dimensional finite difference models were developed using the software FLAC3D. Initially, the static response of the tunnel was evaluated accounting for the excavation technique. Then, the seismic performance evaluation of the tunnel was carried out, computing ground deformations and factors of safety, considering soil nonlinearities. Good agreement was observed between predicted and observed damage during post-event site observations. Once the soundness of the numerical model was established, a numerical study was undertaken to investigate the effect of frequency content in tunnel-induced ground motion incoherence for tunnels built in cemented stiff soils. A series of strong ground motions recorded during normal and subduction events were used in the simulations, considering a return period of 250 years, as recommended in the Mexico City building code. From the results, it was concluded that the tunnel presence leads to important frequency content modification in the tunnel surroundings which can affect low- to mid-rise stiff structures located nearby. This important finding must be taken into account when assessing the seismic risk in highly populated urban areas, such as Mexico City.


Sign in / Sign up

Export Citation Format

Share Document