Sampling Methane-Bearing Coal Seams by Freezing Method: Coalbed Methane Desorption and Inhibition Characteristics Under Freezing Temperature

2019 ◽  
Vol 29 (2) ◽  
pp. 1351-1360 ◽  
Author(s):  
Fakai Wang ◽  
Yongjiang Luo ◽  
Yunpei Liang ◽  
Jianming Peng ◽  
Baijun Li
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Haifeng Ma ◽  
Lingjie Wang ◽  
Housheng Jia ◽  
Jucai Chang ◽  
YingMing Li ◽  
...  

Due to the influence of deep high stress, geothermal heat, and other factors, the law of desorption of methane in coal seams is more complicated in the process of mining deep coal seams, which is prone to methane over-limit, coal and gas outburst, and other accidents. In order to study the desorption characteristics of coalbed methane under different loading and temperature conditions, the desorption tests at different deformation stages of coal containing methane were carried out in the process of loading-adsorption-desorption-reloading until the coal sample was destroyed by using the seepage-adsorption-desorption test system on coal and rock mass, and the test programs were different combinations of gas pressure 1.2 MPa, two kinds of confining pressure, and three kinds of temperature. The results show that the cumulative methane desorption amount corresponding to each deformation stage presents a convex parabolic increase trend with the increase in desorption time, while the desorption rate presents a power function decay trend. Under the condition of the same desorption time, the cumulative methane desorption amount from large to small is residual deformation stage, compaction stage, near the peak stress, plastic deformation stage, and elastic deformation stage. Under the same confining pressure, temperature, and methane pressure, the maximum desorption rate from large to small is residual deformation stage, near the peak stress, plastic deformation stage, compaction stage, and elastic deformation stage. The desorption and diffusion of methane are promoted under the higher temperature and lower confining pressure, which presents a certain mechanism of promoting desorption. The thermal movement of methane molecules is intensified with the increase in temperature, and the adsorption effect between methane molecules and the molecules at the surface of the coal is weakened. The cumulative methane desorption amount and the maximum desorption rate increase with the increase in temperature. The cumulative methane desorption in the residual deformation stage is obviously greater than that in other deformation stages. The increase in confining pressure inhibits the development and expansion of pore fractures in raw coal specimen and hinders the increase in the effective desorption surface area. The cumulative methane desorption amount and the maximum desorption rate decrease with the increase in confining pressure.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6537
Author(s):  
Barbara Uliasz-Misiak ◽  
Jacek Misiak ◽  
Joanna Lewandowska-Śmierzchalska ◽  
Rafał Matuła

In coal seams, depending on the composition of coal macerals, rank of coal, burial history, and migration of thermogenic and/or biogenic gas. In one ton of coal 1 to 25 m3 of methane can be accumulated. Accumulation of this gas is included in unconventional deposits. Exploitation of methane from coal seams is carried out with wells from mining excavations (during mining operations), wells drilled to abandoned coal mines, and wells from the surface to unexploited coal seams. Due to the low permeability of the coal matrix, hydraulic fracturing is also commonly used. Operations related to exploration (drilling works) and exploitation of methane from coal seams were analyzed. The preliminary analysis of the environmental threats associated with the exploration and exploitation of coalbed methane has made it possible to identify types of risks that affect the environment in various ways. The environmental risks were estimated as the product of the probability weightings of adverse events occurring and weightings of consequences. Drilling operations and coalbed methane (CBM) exploitation leads to environmental risks, for which the risk category falls within the controlled and accepted range.


2019 ◽  
Vol 72 (Special issue) ◽  
pp. 57-69
Author(s):  
Zhou Zhang ◽  
Min Zhoua ◽  
Yun-Xing Cao ◽  
Bao-An Xian ◽  
Di Gao
Keyword(s):  

Fuel ◽  
2018 ◽  
Vol 222 ◽  
pp. 56-63 ◽  
Author(s):  
Zhijun Wang ◽  
Xiaotong Ma ◽  
Jianping Wei ◽  
Ning Li

2021 ◽  
Author(s):  
Wei Sun ◽  
LongHao Zhao ◽  
Qian Wang ◽  
Yanchi Liu ◽  
Weiping Zhu ◽  
...  

Abstract Hydraulic fracturing is the most effective reservoirstimulation techniques in the coalbed methane. However, the polymer in the fracturing fluid has a strong effect on the surface of the coal, causing the water lock damage as high as 70% to 90%. It is important to develop an efficient method for releasing coal seam water lock. In this paper, adsorption experiment, SEM, particle size experiment, core flow experiment, wettability and surface tension experiment are used to study the cause of coal seam water lock damage during fracturing and the effect of nano-emulsion on releasing water lock damage in coal seams. Experimental results show that after coal fracturing, the adsorption amount of polymer on the surface of coal is 14.81 mg/g. The large amount of hydrophilic polymer adsorption causes the pore radius of the coal to narrow. And the surface wettability changes from weak hydrophilic to strong hydrophilic, which increase the water lock damage. Compared with conventional slick water, fracturing fluid, the composite of nano-emulsion and fracturing fluid forms mixed micelles, which reduces the polymer adsorption capacity from 14.81 mg/g to 7.42 mg/g. After scanning by electron microscope, it is observed that the surface roughness of the rock sample is restored; The size of the nano-emulsion is about 10nm, and the very small volume can act deep in the pores of the coal seam; After using nano-emulsion, the gas/water interfacial tension is reduced by 45.1mN/m, and the wettability of coal is improved from hydrophilic to neutral, which reduces the capillary pressure in the pores of the coal and reduces the breakthrough pressure of coalbed methane by 11.1KPa; The water lock release rate is as high as 53.09%. The Nano-emulsion is an ideal choice to remove water lock damage.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Hao Han ◽  
Shun Liang ◽  
Yaowu Liang ◽  
Xuehai Fu ◽  
Junqiang Kang ◽  
...  

Elastic modulus is an important parameter affecting the permeability change in the process of coalbed methane (CBM)/enhanced coalbed methane (ECBM) production, which will change with the variable gas content. Much research focuses on the constant value of elastic modulus; however, variable stiffness of coal during CO2 injection has been considered in this work. The coupled thermo-hydro-mechanical (THM) model is established and then validated by primary production data, as well as being applied in the prediction of CO2/N2-ECBM recovery. The results show that the harder coal seam is beneficial to primary production, while the softer coal seam results in greater CO2/N2-ECBM recovery and CO2 sequestration. N2 and CO2 mixture injection could be applied to balance early N2 breakthrough and pronounced matrix swelling induced by CO2 adsorption, and to prolong the process of effective CH4 recovery. Besides, reduction in stiffness of coal seam during CO2 injection would moderate the significant permeability loss induced by matrix swelling. With the increase of the weakening degree of coal seam stiffness, CO2 cumulative storage also shows an increasing trend. Neglecting the weakening effect of CO2 adsorption on coal seam stiffness could underestimate the injection capacity of CO2. Injection of hot CO2 could improve the permeability around injection well and then enhance CO2 cumulative storage and CBM recovery. Furthermore, compared with ECBM production, injection temperature is more favorable for CO2 storage, especially within hard coal seams. Care should be considered that significant permeability change is induced by mechanical characteristics alterations in deep burial coal seams in further study, especially for CO2-ECBM projects.


2018 ◽  
Vol 45 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Zhaobiao YANG ◽  
Zhengguang ZHANG ◽  
Yong QIN ◽  
Congcong WU ◽  
Tongsheng YI ◽  
...  

1997 ◽  
Vol 37 (1) ◽  
pp. 589
Author(s):  
D.J. Gately

1996 was a watershed year for gas exploration in Queensland: the increasing private sector investment in the search for and commercial use of methane gas from coal seams received legislative endorsement. Coal seam gas (CSG), also known as coalbed methane or CBM, was officially designated as petroleum, with exploration for and production of CSG to be administered under the Petroleum Act.The paper traces the history of exploration for CSG in Queensland since 1976, culminating in a policy shift in 1996. In Queensland there is now potential for overlapping titles and competitive resource development.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1404
Author(s):  
Pablo Cienfuegos-Suárez ◽  
Efrén García-Ordiales ◽  
Diego Alonso-Fernández ◽  
Jorge Enrique Soto-Yen

New technological development and a best knowledge of the basin allow to have justified expectation to find coalbed methane reserves. Measurements of gas content in unexploited coal seams are made in order to estimate the CBM could revive the economic interest of the Asturian Central Coal Basin (ACCB). According to first estimations based on the studies accomplished, the minimum resources of coalbed methane in the whole of the Asturian Central Coal Basin are in the order of 25,000 Mm3 and the gas content of the coal seams range from 6 m3 to 14 m3/t. The introduction should briefly place the study in a broad context and define the purpose of the work and its significance.


Sign in / Sign up

Export Citation Format

Share Document