Root order-dependent seasonal dynamics in the carbon and nitrogen chemistry of poplar fine roots

New Forests ◽  
2017 ◽  
Vol 48 (5) ◽  
pp. 587-607 ◽  
Author(s):  
Hongying Chen ◽  
Yufeng Dong ◽  
Tan Xu ◽  
Yanping Wang ◽  
Huatian Wang ◽  
...  
2009 ◽  
Vol 55 (No. 12) ◽  
pp. 556-566 ◽  
Author(s):  
B. Konôpka

Interspecific comparisons of the fine root “behaviour” under stressful situations may answer questions related to resistance to changing environmental conditions in the particular tree species. Our study was focused on Norway spruce (<I>Picea abies</I> [L.] Karst.) and European beech (<I>Fagus sylvatica</I> L.) grown in an acidic soil where acidity was caused by past air pollution in the Kysucké Beskydy Mts., North-Western Slovakia. Between April and October 2006, the following fine root traits were studied: biomass and necromass seasonal dynamics, vertical distribution, production, mortality, fine root turnover and production to mortality ratio. Sequential soil coring was repeatedly implemented in April, June, July, September, and October including the soil layers of 0–5, 5–15, 15–25, and 25–35 cm. Results indicated that spruce had a lower standing stock of fine roots than beech, and fine roots of spruce were more superficially distributed than those of beech. Furthermore, we estimated higher seasonal dynamics and also higher turnover of fine roots in spruce than in beech. The production to mortality ratio was higher in beech than in spruce, which was hypothetically explained as the effect of drought episodes that occurred in July and August. The results suggested that the beech root system could resist a physiological stress better than that of spruce. This conclusion was supported by different vertical distributions of fine roots in spruce and beech stands.


2016 ◽  
Vol 39 (9) ◽  
pp. 2004-2013 ◽  
Author(s):  
Alex M. Paya ◽  
Thorsten E. E. Grams ◽  
Taryn L. Bauerle

2011 ◽  
Vol 71-78 ◽  
pp. 2992-2998
Author(s):  
Ling Ma ◽  
Sheng Nan Liu ◽  
Xin Hua Ding ◽  
Wei Ma

In this paper, the spatial distributions and seasonal dynamics of soil microbes and microbial biomass were investigated in a typical reed marsh in Zhalong natural wetlands.We wanted to explore the main factors that impacted their spatio-temporal patterns. The results showed that: Bacteria were dominant, followed by actinomyces and fungi were at least in the soil microbes community. The seasonal dynamics of soil microbial biomass carbon and nitrogen were more regularly, and their change patterns were significantly as "W" types. The response of soil microbial biomass in Bottom (10-30cm) to time was slower than the surface, and it fluctuated tinily in every months. The correlation analysis shows that the soil nutrient and soil microbial activity had close relationship. Soil microbial biomass carbon and nitrogen were all significantly positively correlated to quantities of fungus, organic carbon content and Alkali-hytrolyzabel N content(P<0.01), but negative extremely significantly correlated with pH (P<0.01).


2018 ◽  
Vol 15 (7) ◽  
pp. 2231-2249 ◽  
Author(s):  
Marie-Pierre Turpault ◽  
Christophe Calvaruso ◽  
Gil Kirchen ◽  
Paul-Olivier Redon ◽  
Carine Cochet

Abstract. The role of forest vegetation in the silicon (Si) cycle has been widely examined. However, to date, little is known about the specific role of fine roots. The main objective of our study was to assess the influence of fine roots on the Si cycle in a temperate forest in north-eastern France. Silicon pools and fluxes in vegetal solid and solution phases were quantified within each ecosystem compartment, i.e. in the atmosphere, above-ground and below-ground tree tissues, forest floor and different soil layers, on three plots, each with different soil types, i.e. Dystric Cambisol (DC), Eutric Cambisol (EC) and Rendzic Leptosol (RL). In this study, we took advantage of a natural soil gradient, from shallow calcic soil to deep moderately acidic soil, with similar climates, atmospheric depositions, species compositions and management. Soil solutions were measured monthly for 4 years to study the seasonal dynamics of Si fluxes. A budget of dissolved Si (DSi) was also determined for the forest floor and soil layers. Our study highlighted the major role of fine roots in the Si cycle in forest ecosystems for all soil types. Due to the abundance of fine roots mainly in the superficial soil layers, their high Si concentration (equivalent to that of leaves and 2 orders higher than that of coarse roots) and their rapid turnover rate (approximately 1 year), the mean annual Si fluxes in fine roots in the three plots were 68 and 110 kgha-1yr-1 for the RL and the DC, respectively. The turnover rates of fine roots and leaves were approximately 71 and 28 % of the total Si taken up by trees each year, demonstrating the importance of biological recycling in the Si cycle in forests. Less than 1 % of the Si taken up by trees each year accumulated in the perennial tissues. This study also demonstrated the influence of soil type on the concentration of Si in the annual tissues and therefore on the Si fluxes in forests. The concentrations of Si in leaves and fine roots were approximately 1.5–2.0 times higher in the Si-rich DC compared to the Si-poor RL. In terms of the DSi budget, DSi production was large in the three plots in the forest floor (9.9 to 12.7 kgha-1yr-1), as well as in the superficial soil layer (5.3 to 14.5 kgha-1yr-1), and decreased with soil depth. An immobilization of DSi was even observed at 90 cm depth in plot DC (−1.7 kgha-1yr-1). The amount of Si leached from the soil profile was relatively low compared to the annual uptake by trees (13 % in plot DC to 29 % in plot RL). The monthly measurements demonstrated that the seasonal dynamics of the DSi budget were mainly linked to biological activity. Notably, the peak of dissolved Si production in the superficial soil layer occurred during winter and probably resulted from fine-root decomposition. Our study reveals that biological processes, particularly those involving fine roots, play a predominant role in the Si cycle in temperate forest ecosystems, while the geochemical processes appear to be limited.


Author(s):  
Yuriy Yuryi Kravchenko ◽  
Zhang Xingyi ◽  
Song Chun-yu ◽  
Yarosh Anna Viyacheslavivna ◽  
Voitsekhivska Olena Vasilivna

The main purpose of this study was to determine the size and direction of the seasonal dynamics of organic carbon (Сmicro) and nitrogen (Nmicro) biomass of microorganisms and microbial index (Cmicro : Corg) of natural and agrocenoses with their different uses. Field research methods involved taking of soil samples in 0-10-, 10-20- and 20-40 сm layers. Under laboratory conditions, the content of total soil carbon was determined by dry oxygen combustion on a Vario EL III analyzer (Elementar Analyzensysteme, Hanau, Germany). The carbon content of microbial biomass (Сmicro) was determined by chloroform fumigation extraction method (CFE). To freshly taken soil samples (2 hours) and soil samples after their 24-hour fumigation with chloroform vapors, 0.5 M K2SO4 was added to extract biomass lysis products of soil microorganisms. The content of organic carbon and nitrogen in the biomass of microorganisms in the obtained filtrates was determined on the Elementar Liqui TOC II, Analyzensysteme GmbH, Germany. The carbon content of microbial biomass was calculated from the difference between carbon in fumigated and control samples using a factor of 0,45 - for carbon and 0,54 &ndash; for nitrogen. The microbial index of soils was determined by the ratio between the carbon of microorganisms and the total organic carbon of the soil &ndash; Cmicro : Corg &bull; 100 (%). Average values and confidence intervals were determined for each defined indicator. The Bonferoni method was used to correct the errors of multiple comparative samples of a one-way ANOVA analyze. K. Pearson&rsquo;s linear correlation analysis was used to establish the relationships between the dynamics of carbon biomass of microorganisms and organic carbon of the soil during the growing season. Our research has shown the dynamics of Сmicro, Nmicro, Сmicro : Nmicro and Cmicro : Corg during the growing season. Analysis of the box plot showed the largest amplitude of Сmicro changes in the upper 0-10 cm layer of izogumusol. The smallest difference in the quartile range (IQR0,25-0,75) was for no-till and overhang (Ab) in the upper 0-10-, no-till (NT) and fallow (F) - in the layer 10-20- and plowing (CT) - in a layer of 20-40 cm. The content of organic carbon biomass of microorganisms in the upper layer of izogumusol at the beginning of the growing season had the highest values of Ab (577,79  1,64 mg/kg), NT (485,43  1,97 mg/kg) and CT (470,43  0,77 mg/kg), the smallest - for F (370,15  2,18 mg/kg). The content of Nmicro during this period decreased from Ab to Comb (combined tillage), NT, CT, Rot (rotary tillage), RT (reduced (ridge) tillage) and F, respectively. In the 20-40 cm layer, the highest values of Сmicro and Nmicro were observed in mid-July. The lowest values of Сmicro and Nmicro and the largest &ndash; Сmicro : Nmicro were found in late August for all variants and layers of the study. The dynamics of the microbial index resembled the trends of Сmicro and Nmicro. The largest share of Smicro in Sorghum during the growing season, on average was: - Ab (1,82  1,85 %) and NT (1,66  1,52 %) - in the layer 0-10-, - Ab (1,23  1,27 %) and NT (1,29  1,32 %) - in the layer 10-20- and - Ab (1,19  1,09 %) and F (1,11  1,077 %) - in a layer of 20-40 cm. Different use of izogumusol affected the amplitude of seasonal changes of Сmicro and Nmicro and did not affect on their direction. The maximum content of Сmicro and Nmicro was observed at the beginning of the growing season - in a layer of 0-10 cm and in mid-July - in a layer of 20-40 cm, the minimum - at the end of the summer period. During this period, the widest ratio of Сmicro : Nmicro was for F and CT - in the layer 0-20 cm and CT and Rot - in the layer 20-40 cm. The Pearson&rsquo;s correlation coefficient between Сmicro and Corg increased from the upper 0-10- to the lower 20-40 cm layer of izogumusol. "Strong" and "high" negative correlations have been established between Сmicro and Corg, but no pattern has been found between the correlation coefficient and tillage technologies.


Author(s):  
Hui Wang ◽  
Bing Wang ◽  
Xiang Niu ◽  
Qingfeng Song ◽  
Haonan Bai ◽  
...  

We analyzed the plant-litter-soil continuum to investigate the carbon and nitrogen distribution and ecological stoichiometry of an evergreen broad-leaved forest at Dagangshan Mountain, Jiangxi. The results showed that the average C and N contents and C:N ratios in the leaves and fine roots among 6 different tree species were 401.87g/kg, 21.41g/kg, 19.27 and 348.64g/kg, 15.73g/kg, 23.97, respectively; the average C and N contents and C:N ratios were 323.06 g/kg, 12.76 g/kg, 25.58 respectively in leaf litter, and 16.40 g/kg, 1.09 g/kg, 16.27 respectively for soil. In contrast with the C content, the total N content of the fine roots and litter had a high coefficient of variation and a high spatial heterogeneity. We ranked the six different representative tree species according to total C and N content in leaves and fine roots. The results for each species were generally consistent with each other, showing a positive correlation relationship between total C and N content in the leaves and roots. Among them, S. discolor (Champ. ex Benth.) Muell. plants displayed high carbon and nitrogen storage capacities, and on the other hand, C. fargesii Franch., C. myrsinifolia (Blume) Oersted, A. fortunei (Hemsl.) Makino, and V. fordii (Hemsl.) Airy Shaw showed a high nitrogen transfer rate. Total soil N and C decreased with depth. Soil organic carbon (SOC), soil resistant organic carbon (ROC), total N, alkali nitrogen, NH4+-N and NO3--N contents were all also negative correlated with soil depth, but the contents of the NH4+-N and NO3--N did not change significantly; The spatial distribution of soil NO3--N was significantly heterogeneous. At 0-10 cm soil depth, SOC was positively correlated with alkaline nitrogen, and at 10-20 cm soil depth, SOC was significantly positively correlated with total N. In general, when soil carbon was abundant, nitrogen supply capacity was also high.


2017 ◽  
Author(s):  
Marie-Pierre Turpault ◽  
Christophe Calvaruso ◽  
Gil Kirchen ◽  
Paul-Olivier Redon ◽  
Carine Cochet

Abstract. The role of forest vegetation in the silicon (Si) cycle has been widely examined. However, to date, no study has investigated the specific role of fine roots. The main objectives of our study were to assess the influence of fine roots as well as the impact of soil properties on the Si cycle in a temperate forest in northeastern France. Silicon pools and fluxes in solid and solution phases were quantified within each ecosystem compartment, i.e., the atmosphere, aboveground and belowground tree tissues, forest floor, and different soil horizons, on three plots, each with different soil types, i.e., Dystric Cambisol (plot S1), Eutric Cambisol (plot S2), and Rendzic Leptosol (plot S3). In this study, we took advantage of a natural soil gradient, from shallow calcic soil to deep moderately acidic soil, with similar climates, atmospheric depositions, species composition and management. Soil solutions were measured monthly for four years to study the seasonal dynamics of Si fluxes. A budget of dissolved Si was also determined for the forest floor and soil layers. Our study highlighted the major role of fine roots in the Si cycle in forest ecosystems for all soil types. Because of the abundance of fine roots mainly in the superficial soil horizons, their high Si concentration (equivalent to that of leaves and two orders higher than that of coarse roots) and their rapid turnover rate (approximately one year), the mean annual Si fluxes in fine roots in the three plots ranged from 68 to 110 kg ha−1 y−1 for the Rendzic Leptosol and the Dystric Cambisol, respectively. The turnover of fine roots and leaves was approximately 71 % and 28 % of the total Si taken up by trees each year, respectively, demonstrating the importance of biological recycling in the Si cycle in forests. Less than 1 % of the Si taken up by trees each year accumulated in the perennial tissues. This study also demonstrated the influence of soil type on the concentration of Si in the annual tissues and therefore on the Si fluxes in forests. The concentrations of Si in leaves and fine roots were approximately 1.5–2.0 times higher in the Si-rich Dystric Cambisol compared to the Si poor Rendzic Leptosol. In terms of the dissolved Si budget, there were large amounts of dissolved Si in the three plots on the forest floor (9.9 to 12.7 kg ha−1 y−1) and in the superficial soil horizon (5.3 to 14.5 kg ha−1 y−1), and Si decreased with depth in plot S1 (1.7 kg ha−1 y−1). The amount of Si leached from the soil profile was relatively low compared to the annual uptake by trees (13 % in plot S1 to 29 % in plot S3). The monthly measurements demonstrated that the seasonal dynamics of the dissolved Si budget were mainly linked to biological activity. Notably, the peak of dissolved Si production in the superficial soil horizon was during the winter and probably resulted from fine root decomposition. Our study reveals that biological processes, particularly those of fine roots, play a predominant role in the Si cycle in temperate forest ecosystems, while the geochemical processes appear to be limited.


Author(s):  
Gbadamassi G.O. Dossa ◽  
Yan-Qiang Jin ◽  
Xiao-Tao Lü ◽  
Jian-Wei Tang ◽  
Rhett D. Harrison

Plants produce above- and below-ground biomass. However, our understanding of both production and decomposition of below-ground biomass is poor, largely because of the difficulties of accessing study materials. Below-ground organic matter decomposition studies are scanty and especially rare in the tropics. Here, we used a litter bag experiment to quantify the mass loss and nutrients dynamics of decomposing twigs and fine roots from an arbuscular mycorrhizal fungal associated tree, Parashorea chinensis, in a tropical rain forest in Southwest China. Overall, twig litter decomposed 1.9 times faster than fine roots (decay rate (k) twig=0.255, root=0.134). The difference in decomposition rates can be explained by a difference in phosphorus (P) concentration, availability and use by decomposers or C quality. Both materials showed an increase in N concentration, with final measurements still higher than initial levels. This suggests N may not be available due to microbial immobilization. Both carbon and nitrogen dynamics were significantly predicted by mass loss and showed a negative and positive relationship, respectively. Our study results imply that fine roots carbon and nitrogen contribute more to soils organic matter and enlarge the resident time. Therefore, better understanding of carbon cycle requires better understanding of mechanisms governing below ground biomass decomposition.&nbsp; &nbsp;


Sign in / Sign up

Export Citation Format

Share Document