Sensitivity of MM5 and WRF mesoscale model predictions of surface winds in a typhoon to planetary boundary layer parameterizations

2009 ◽  
Vol 51 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Ji Hye Kwun ◽  
You-Keun Kim ◽  
Jang-Won Seo ◽  
Ju Hee Jeong ◽  
Sung Hyup You
2003 ◽  
Vol 3 (1) ◽  
pp. 797-825 ◽  
Author(s):  
O. Couach ◽  
I Balin ◽  
R. Jiménez ◽  
P. Ristori ◽  
S. Perego ◽  
...  

Abstract. This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m a.s.l.). The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR). Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE). The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.


2008 ◽  
Vol 47 (3) ◽  
pp. 752-768 ◽  
Author(s):  
Susanne Grossman-Clarke ◽  
Yubao Liu ◽  
Joseph A. Zehnder ◽  
Jerome D. Fast

Abstract A modified version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was applied to the arid Phoenix, Arizona, metropolitan region. The ability of the model to simulate characteristics of the summertime urban planetary boundary layer (PBL) was tested by comparing model results with observations from two field campaigns conducted in May/June 1998 and June 2001. The modified MM5 included a refined land use/cover classification and updated land use data for Phoenix and bulk approaches of characteristics of the urban surface energy balance. PBL processes were simulated by a version of MM5’s Medium-Range Forecast Model (MRF) scheme that was enhanced by new surface flux and nonlocal mixing approaches. Simulated potential temperature profiles were tested against radiosonde data, indicating that the modified MRF scheme was able to simulate vertical mixing and the evolution and height of the PBL with good accuracy and better than the original MRF scheme except in the late afternoon. During both simulation periods, it is demonstrated that the modified MM5 simulated near-surface air temperatures and wind speeds in the urban area consistently and considerably better than the standard MM5 and that wind direction simulations were improved slightly.


2010 ◽  
Vol 10 (6) ◽  
pp. 1129-1149 ◽  
Author(s):  
M. Milelli ◽  
M. Turco ◽  
E. Oberto

Abstract. The forecast in areas of very complex topography, as for instance the Alpine region, is still a challenge even for the new generation of numerical weather prediction models which aim at reaching the km-scale. The problem is enhanced by a general lack of standard observations, which is even more evident over the southern side of the Alps. For this reason, it would be useful to increase the performance of the mathematical models by locally assimilating non-conventional data. Since in ARPA Piemonte there is the availability of a great number of non-GTS stations, it has been decided to assimilate the 2 m temperature, coming from this dataset, in the very-high resolution version of the COSMO model, which has a horizontal resolution of about 3 km, more similar to the average resolution of the thermometers. Four different weather situations have been considered, ranging from spring to winter, from cloudy to clear sky. The aim of the work is to investigate the effects of the assimilation of non-GTS data in order to create an operational very high-resolution analysis, but also to test the option of running in the future a very short-range forecast starting from these analyses (RUC or Rapid Update Cycle). The results, in terms of Root Mean Square Error, Mean Error and diurnal cycle of some surface variables such as 2 m temperature, 2 m relative humidity and 10 m wind intensity show a positive impact during the assimilation cycle which tends to dissipate a few hours after the end of it. Moreover, the 2 m temperature assimilation has a slightly positive or neutral impact on the vertical profiles of temperature, eventhough some calibration is needed for the precipitation field which is too much perturbed during the assimilation cycle, while it is unaffected in the forecast period. So the stability of the planetary boundary layer, on the one hand, has not been particularly improved by the new-data assimilation, but, on the other hand, it has not been destroyed. It has to be pointed out that a correct description of the planetary boundary layer, even only the lowest part of it, could be helpful to the forecasters and, in general, to the users, in order to deal with meteorological hazards such as snow (in particular snow/rain limit definition), or fog (description of temperature inversions).


2014 ◽  
Vol 7 (2) ◽  
pp. 2705-2743 ◽  
Author(s):  
C.-S. M. Wilmot ◽  
B. Rappenglück ◽  
X. Li

Abstract. Air quality forecasting requires atmospheric weather models to generate accurate meteorological conditions, one of which is the development of the planetary boundary layer (PBL). An important contributor to the development of the PBL is the land-air exchange captured in the energy budget as well as turbulence parameters. Standard and surface energy variables were modeled using the fifth-generation Penn State/National Center for Atmospheric Research mesoscale model (MM5), version 3.6.1, and the Weather Research and Forecasting (WRF) model, version 3.2.1, and compared to measurements for a southeastern Texas coastal region. The study period was 28 August–1 September 2006. It also included a frontal passage. The results of the study are ambiguous. Although WRF does not perform as well as MM5 in predicting PBL heights, it better simulates most of the general and energy budget variables. Both models overestimate incoming solar radiation, which implies a surplus of energy that could be redistributed in either the partitioning of the surface energy variables or in some other aspect of the meteorological modeling not examined here. The MM5 model consistently had much drier conditions than the WRF model, which could lead to more energy available to other parts of the meteorological system. On the clearest day of the study period MM5 had increased latent heat flux, which could lead to higher evaporation rates and lower moisture in the model. However, this latent heat disparity between the two models is not visible during any other part of the study. The observed frontal passage affected the performance of most of the variables, including the radiation, flux, and turbulence variables, at times creating dramatic differences in the r2 values.


2015 ◽  
Vol 159 (3) ◽  
pp. 589-609 ◽  
Author(s):  
Reneta Dimitrova ◽  
Zachariah Silver ◽  
Tamas Zsedrovits ◽  
Christopher M. Hocut ◽  
Laura S. Leo ◽  
...  

2003 ◽  
Vol 3 (3) ◽  
pp. 549-562 ◽  
Author(s):  
O. Couach ◽  
I. Balin ◽  
R. Jiménez ◽  
P. Ristori ◽  
S. Perego ◽  
...  

Abstract. This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m ASL). The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR). Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE. The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.


2013 ◽  
Vol 28 (3) ◽  
pp. 842-862 ◽  
Author(s):  
Michael C. Coniglio ◽  
James Correia ◽  
Patrick T. Marsh ◽  
Fanyou Kong

Abstract This study evaluates forecasts of thermodynamic variables from five convection-allowing configurations of the Weather Research and Forecasting Model (WRF) with the Advanced Research core (WRF-ARW). The forecasts vary only in their planetary boundary layer (PBL) scheme, including three “local” schemes [Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Mellor–Yamada–Nakanishi–Niino (MYNN)] and two schemes that include “nonlocal” mixing [the asymmetric cloud model version 2 (ACM2) and the Yonei University (YSU) scheme]. The forecasts are compared to springtime radiosonde observations upstream from deep convection to gain a better understanding of the thermodynamic characteristics of these PBL schemes in this regime. The morning PBLs are all too cool and dry despite having little bias in PBL depth (except for YSU). In the evening, the local schemes produce shallower PBLs that are often too shallow and too moist compared to nonlocal schemes. However, MYNN is nearly unbiased in PBL depth, moisture, and potential temperature, which is comparable to the background North American Mesoscale model (NAM) forecasts. This result gives confidence in the use of the MYNN scheme in convection-allowing configurations of WRF-ARW to alleviate the typical cool, moist bias of the MYJ scheme in convective boundary layers upstream from convection. The morning cool and dry biases lead to an underprediction of mixed-layer CAPE (MLCAPE) and an overprediction of mixed-layer convective inhibition (MLCIN) at that time in all schemes. MLCAPE and MLCIN forecasts improve in the evening, with MYJ, QNSE, and MYNN having small mean errors, but ACM2 and YSU having a somewhat low bias. Strong observed capping inversions tend to be associated with an underprediction of MLCIN in the evening, as the model profiles are too smooth. MLCAPE tends to be overpredicted (underpredicted) by MYJ and QNSE (MYNN, ACM2, and YSU) when the observed MLCAPE is relatively small (large).


Sign in / Sign up

Export Citation Format

Share Document