Individual exposure to particulate matter in urban and rural Chinese households: estimation of exposure concentrations in indoor and outdoor environments

2019 ◽  
Vol 99 (3) ◽  
pp. 1397-1414
Author(s):  
Minna Guo ◽  
Rui Xing ◽  
Yoko Shimada ◽  
Gakuji Kurata
Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 885
Author(s):  
Xiaomei Gao ◽  
Weidong Gao ◽  
Xiaoyan Sun ◽  
Wei Jiang ◽  
Ziyi Wang ◽  
...  

Fine particulate matter (PM2.5) was simultaneously collected from the indoor and outdoor environments in urban area of Jinan in North China from November to December 2018 to evaluate the characteristics and sources of indoor PM2.5 pollution. The concentrations of indoor and outdoor PM2.5 were 69.0 ± 50.5 µg m−3 and 128.7 ± 67.9 µg m−3, respectively, much higher than the WHO-established 24-h standards for PM2.5, indicating serious PM2.5 pollution of indoor and outdoor environments in urban Jinan. SO42−, NO3−, NH4+, and organic carbon (OC) were the predominant components, which accounted for more than 60% of the PM2.5 concentration. The total elemental risk values in urban Jinan for the three highly vulnerable groups of population (children (aged 2–6 years and 6–12 years) and older adults (≥70 years)) were nearly 1, indicating that exposure to all of the elements in PM2.5 had potential non-carcinogenic risks to human health. Further analyses of the indoor/outdoor concentration ratios, infiltration rates (FINF), and indoor-generated concentration (Cig) indicated that indoor PM2.5 and its major chemical components (SO42−, NO3−, NH4+, OC, and elemental carbon) were primarily determined by outdoor pollution. The lower indoor NO3−/SO42− ratio and FINF of NO3− relative to the outdoor values were due to the volatility of NO3−. Positive matrix factorization (PMF) was performed to estimate the sources of PM2.5 using the combined datasets of indoor and outdoor environments and revealed that secondary aerosols, dust, cement production, and coal combustion/metal smelting were the major sources during the sampling period.


2019 ◽  
Vol 11 (24) ◽  
pp. 7220 ◽  
Author(s):  
Sergio Trilles ◽  
Ana Belen Vicente ◽  
Pablo Juan ◽  
Francisco Ramos ◽  
Sergi Meseguer ◽  
...  

A suitable and quick determination of air quality allows the population to be alerted with respect to high concentrations of pollutants. Recent advances in computer science have led to the development of a high number of low-cost sensors, improving the spatial and temporal resolution of air quality data while increasing the effectiveness of risk assessment. The main objective of this work is to perform a validation of a particulate matter (PM) sensor (HM-3301) in indoor and outdoor environments to study PM2.5 and PM10 concentrations. To date, this sensor has not been evaluated in real-world situations, and its data quality has not been documented. Here, the HM-3301 sensor is integrated into an Internet of things (IoT) platform to establish a permanent Internet connection. The validation is carried out using a reference sampler (LVS3 of Derenda) according to EN12341:2014. It is focused on statistical insight, and environmental conditions are not considered in this study. The ordinary Linear Model, the Generalized Linear Model, Locally Estimated Scatterplot Smoothing, and the Generalized Additive Model have been proposed to compare and contrast the outcomes. The low-cost sensor is highly correlated with the reference measure ( R 2 greater than 0.70), especially for PM2.5, with a very high accuracy value. In addition, there is a positive relationship between the two measurements, which can be appropriately fitted through the Locally Estimated Scatterplot Smoothing model.


Exposure to outdoor and indoor air particles (also known as particulate matter or PM) has attracted the interest of the scientific researchers around the world, this is because of the adverse health effects that particles have on the human. Smaller fractions of particulate matter (repairable range, ≤10 µm) give the greatest health problem, because they have the ability to reach deeper parts of the human respiratory system. Many countries have paid attention to the air pollution and made regulations to improve their indoor and outdoor air quality, Saudi Arabia, particularly Qassim region, has not given much attention to the problem of air contaminants in the ambient and indoor environments. In addition, ambient environmental parameters will be recorded. The results obtained from the indoor and outdoor measurements will help us to evaluate the air quality in Buraydah city for different seasons in the indoor and outdoor environments.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 359
Author(s):  
Ewa Brągoszewska

The Atmosphere Special Issue entitled “Health Effects and Exposure Assessment to Bioaerosols in Indoor and Outdoor Environments” comprises five original papers [...]


Sign in / Sign up

Export Citation Format

Share Document