Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China

2020 ◽  
Author(s):  
Xudong Hu ◽  
Hongbo Mei ◽  
Han Zhang ◽  
Yuanyuan Li ◽  
Mengdi Li
CATENA ◽  
2020 ◽  
Vol 195 ◽  
pp. 104805 ◽  
Author(s):  
Binh Thai Pham ◽  
Trung Nguyen-Thoi ◽  
Chongchong Qi ◽  
Tran Van Phong ◽  
Jie Dou ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 4016 ◽  
Author(s):  
Xudong Hu ◽  
Han Zhang ◽  
Hongbo Mei ◽  
Dunhui Xiao ◽  
Yuanyuan Li ◽  
...  

Landslide susceptibility mapping is considered to be a prerequisite for landslide prevention and mitigation. However, delineating the spatial occurrence pattern of the landslide remains a challenge. This study investigates the potential application of the stacking ensemble learning technique for landslide susceptibility assessment. In particular, support vector machine (SVM), artificial neural network (ANN), logical regression (LR), and naive Bayes (NB) were selected as base learners for the stacking ensemble method. The resampling scheme and Pearson’s correlation analysis were jointly used to evaluate the importance level of these base learners. A total of 388 landslides and 12 conditioning factors in the Lushui area (Southwest China) were used as the dataset to develop landslide modeling. The landslides were randomly separated into two parts, with 70% used for model training and 30% used for model validation. The models’ performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and statistical measures. The results showed that the stacking-based ensemble model achieved an improved predictive accuracy as compared to the single algorithms, while the SVM-ANN-NB-LR (SANL) model, the SVM-ANN-NB (SAN) model, and the ANN-NB-LR (ANL) models performed equally well, with AUC values of 0.931, 0.940, and 0.932, respectively, for validation stage. The correlation coefficient between the LR and SVM was the highest for all resampling rounds, with a value of 0.72 on average. This connotes that LR and SVM played an almost equal role when the ensemble of SANL was applied for landslide susceptibility analysis. Therefore, it is feasible to use the SAN model or the ANL model for the study area. The finding from this study suggests that the stacking ensemble machine learning method is promising for landslide susceptibility mapping in the Lushui area and is capable of targeting areas prone to landslides.


2020 ◽  
Vol 12 (11) ◽  
pp. 1737 ◽  
Author(s):  
Bahareh Kalantar ◽  
Naonori Ueda ◽  
Vahideh Saeidi ◽  
Kourosh Ahmadi ◽  
Alfian Abdul Halin ◽  
...  

Predicting landslide occurrences can be difficult. However, failure to do so can be catastrophic, causing unwanted tragedies such as property damage, community displacement, and human casualties. Research into landslide susceptibility mapping (LSM) attempts to alleviate such catastrophes through the identification of landslide prone areas. Computational modelling techniques have been successful in related disaster scenarios, which motivate this work to explore such modelling for LSM. In this research, the potential of supervised machine learning and ensemble learning is investigated. Firstly, the Flexible Discriminant Analysis (FDA) supervised learning algorithm is trained for LSM and compared against other algorithms that have been widely used for the same purpose, namely Generalized Logistic Models (GLM), Boosted Regression Trees (BRT or GBM), and Random Forest (RF). Next, an ensemble model consisting of all four algorithms is implemented to examine possible performance improvements. The dataset used to train and test all the algorithms consists of a landslide inventory map of 227 landslide locations. From these sources, 13 conditioning factors are extracted to be used in the models. Experimental evaluations are made based on True Skill Statistic (TSS), the Receiver Operation characteristic (ROC) curve and kappa index. The results show that the best TSS (0.6986), ROC (0.904) and kappa (0.6915) were obtained by the ensemble model. FDA on its own seems effective at modelling landslide susceptibility from multiple data sources, with performance comparable to GLM. However, it slightly underperforms when compared to GBM (BRT) and RF. RF seems most capable compared to GBM, GLM, and FDA, when dealing with all conditioning factors.


Sign in / Sign up

Export Citation Format

Share Document