Nonlinear dynamic analysis and sliding mode control for a gyroscope system

2010 ◽  
Vol 66 (1-2) ◽  
pp. 53-65 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Her-Terng Yau
Author(s):  
Pengbing Zhao ◽  
Jin Huang ◽  
Yaoyao Shi

Milling head is an essential assembly in the five-axis computer numerical control machine tools, positioning precision of which directly affects the machining accuracy and surface quality of the processed parts. Considering the influence of nonlinear friction in the transmission mechanism and the uncertain cutting force disturbance on the control precision of the milling head, the static and dynamic performances of the milling head are analyzed; relationships among the drive torque, load torque, motion direction and system parameters are discussed; and, finally, nonlinear dynamic model of the milling head is established. A novel adaptive sliding mode control scheme based on the variable switching gain and the adjustable boundary thickness is proposed for this nonlinear dynamic model; the stability of the closed-loop system is guaranteed by the Lyapunov theory. Experimental results show that the proposed adaptive sliding mode control can reduce the chattering in the traditional sliding mode control and can achieve high control precision without knowing the boundaries of uncertainties in advance.


Author(s):  
Hak Yi ◽  
Je Hong Yoo ◽  
Reza Langari

In this paper, we have considered the new extendable modular multi-DOFs link to have a larger reachable workspace and more dexterous manipulability, as compared to a typical link. As a part of the extendable modular robot (EMR), our link is implemented to allow free motion when performing required tasks. In addition, this paper deals with a function of adjusting the link’s length (within 25% of the nominal length). Our investigation also focuses on the dynamics of a multi-DOFs link and the nonlinear controller for a given trajectory. The simulation results show the effectiveness of this control approach.


Sign in / Sign up

Export Citation Format

Share Document