Finite-time synchronization control for a class of perturbed nonlinear systems with fixed convergence time and hysteresis quantizer: applied to Genesio–Tesi chaotic system

Author(s):  
Mohammad Javad Mirzaei ◽  
Ehsan Aslmostafa ◽  
Mostafa Asadollahi ◽  
Mohammad Ali Badamchizadeh
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Bin Yang ◽  
Xin Wang ◽  
Yongju Zhang ◽  
Yuhua Xu ◽  
Wuneng Zhou

This paper is mainly concerned with how nonlinear coupled one impacts synchronization dynamics of a class of nonlinear coupled Markovian switching multiweighted complex networks (NCMSMWCNs). Firstly, sufficient conditions of finite-time synchronization for a class of NCMSMWCNs and a class of linear coupled Markovian switching multiweighted complex networks (LCMSMWCNs) are investigated. Secondly, based on the derived results, how nonlinear coupled one affects synchronization dynamics of the NCMSMWCNs is analyzed from synchronization control rule. Thirdly, in order to further explore how nonlinear coupled one affects synchronization dynamics of the NCMSMWCNs, synchronization dynamics relationship of the NCMSMWCNs and the LCMSMWCNs is built. Furthermore, this relationship can also show how linear coupled one affects synchronization dynamics of the LCMSMWCNs. At last, numerical examples are provided to demonstrate the effectiveness of the obtained theory.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ricardo Aguilar-López ◽  
Juan L. Mata-Machuca

This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Ying Liu ◽  
Fei Chen ◽  
Bin Yang ◽  
Xin Wang ◽  
Weiming Wang

In this paper, we investigate the finite-time synchronization control for a class of nonlinear coupled multiweighted complex networks (NCMWCNs) with Markovian switching and time-varying delay analytically and quantitatively. The value of this study lies in four aspects: First, it designs the finite-time synchronization controller to make the NCMWCNs with Markovian switching and time-varying delay achieve global synchronization in finite time. Second, it derives two kinds of finite-time estimation approaches by analyzing the impact of the nonlinearity of nonlinear coupled function on synchronization dynamics and synchronization convergence time. Third, it presents the relationship between Markovian switching parameters and synchronization problems of subsystems and the overall system. Fourth, it provides some numerical examples to demonstrate the effectiveness of the theoretical results.


Author(s):  
Zuoxun Wang ◽  
Jiaxun Liu ◽  
Fangfang Zhang ◽  
Sen Leng

Although a large number of hidden chaotic attractors have been studied in recent years, most studies only refer to integer-order chaotic systems and neglect the relationships among chaotic attractors. In this paper, we first extend LE1 of sprott from integer-order chaotic systems to fractional-order chaotic systems, and we add two constant controllers which could produce a novel fractional-order chaotic system with hidden chaotic attractors. Second, we discuss its complicated dynamic characteristics with the help of projection pictures and bifurcation diagrams. The new fractional-order chaotic system can exhibit self-excited attractor and three different types of hidden attractors. Moreover, based on fractional-order finite time stability theory, we design finite time synchronization scheme of this new system. And combination synchronization of three fractional-order chaotic systems with hidden chaotic attractors is also derived. Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization methods.


2022 ◽  
Author(s):  
Shaohui Yan ◽  
Qiyu Wang ◽  
Ertong Wang ◽  
Xi Sun ◽  
Zhenlong Song

Abstract The definition of fractional calculus is introduced into the 5D chaotic system, and the 5D fractional-order chaotic system is obtained. The new 5D fractional-order chaotic system has no equilibrium, multi-scroll hidden attractor and multi-stability. By analyzing the time-domain waveform, phase diagram, bifurcation diagram and complexity, it is found that the system has no equilibrium but is very sensitive to parameters and initial values. With the variation of different parameters, the system can produce attractors of different scroll types accompanied by bursting oscillation. Secondly, the multi-stability of the hidden attractor is studied. Different initial values lead to the coexistence of attractors of different scroll number, which shows the advantages of the system. The correctness and realizability of the fractional-order chaotic system are proved by analog circuit and physical implement. Finally, because of the high security of multi-scroll attractor and hidden attractor, finite-time synchronization based on the fractional-order chaotic system is studied, which has a good application prospect in the field of secure communication.


Sign in / Sign up

Export Citation Format

Share Document