The Interface Motion and Hydrodynamic Shear of the Liquid Slosh in Syringes

2021 ◽  
Vol 38 (2) ◽  
pp. 257-275
Author(s):  
Yuchen Zhang ◽  
Dingding Han ◽  
Zhongwang Dou ◽  
Jean-Christophe Veilleux ◽  
Galen H. Shi ◽  
...  
Author(s):  
J. L. Batstone ◽  
D.A. Smith

Recrystallization of amorphous NiSi2 involves nucleation and growth processes which can be studied dynamically in the electron microscope. Previous studies have shown thatCoSi2 recrystallises by nucleating spherical caps which then grow with a constant radial velocity. Coalescence results in the formation of hyperbolic grain boundaries. Nucleation of the isostructural NiSi2 results in small, approximately round grains with very rough amorphous/crystal interfaces. In this paper we show that the morphology of the rccrystallizcd film is dramatically affected by variations in the stoichiometry of the amorphous film.Thin films of NiSi2 were prepared by c-bcam deposition of Ni and Si onto Si3N4, windows supported by Si substrates at room temperature. The base pressure prior to deposition was 6 × 107 torr. In order to investigate the effect of stoichiomctry on the recrystallization process, the Ni/Si ratio was varied in the range NiSi1.8-2.4. The composition of the amorphous films was determined by Rutherford Backscattering.


Author(s):  
Patrícia Tonon ◽  
Rodolfo André Kuche Sanches ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar

AbstractGood mesh moving methods are always part of what makes moving-mesh methods good in computation of flow problems with moving boundaries and interfaces, including fluid–structure interaction. Moving-mesh methods, such as the space–time (ST) and arbitrary Lagrangian–Eulerian (ALE) methods, enable mesh-resolution control near solid surfaces and thus high-resolution representation of the boundary layers. Mesh moving based on linear elasticity and mesh-Jacobian-based stiffening (MJBS) has been in use with the ST and ALE methods since 1992. In the MJBS, the objective is to stiffen the smaller elements, which are typically placed near solid surfaces, more than the larger ones, and this is accomplished by altering the way we account for the Jacobian of the transformation from the element domain to the physical domain. In computing the mesh motion between time levels $$t_n$$ t n and $$t_{n+1}$$ t n + 1 with the linear-elasticity equations, the most common option is to compute the displacement from the configuration at $$t_n$$ t n . While this option works well for most problems, because the method is path-dependent, it involves cycle-to-cycle accumulated mesh distortion. The back-cycle-based mesh moving (BCBMM) method, introduced recently with two versions, can remedy that. In the BCBMM, there is no cycle-to-cycle accumulated distortion. In this article, for the first time, we present mesh moving test computations with the BCBMM. We also introduce a version we call “half-cycle-based mesh moving” (HCBMM) method, and that is for computations where the boundary or interface motion in the second half of the cycle consists of just reversing the steps in the first half and we want the mesh to behave the same way. We present detailed 2D and 3D test computations with finite element meshes, using as the test case the mesh motion associated with wing pitching. The computations show that all versions of the BCBMM perform well, with no cycle-to-cycle accumulated distortion, and with the HCBMM, as the wing in the second half of the cycle just reverses its motion steps in the first half, the mesh behaves the same way.


2012 ◽  
Vol 460 ◽  
pp. 230-235
Author(s):  
Pei Zhen Huang ◽  
Zhou Zhou Zhang ◽  
Jian Wei Guo ◽  
Jun Sun

An axisymmetric finite-element method is developed to predict the evolution behavior of microstructures by interface migration. The formulation of the method is conducted on the basis of the energy principle during the interface motion. The computations extend earlier models by accounting in detail for the effects of grain-boundary energy, surface energy and chemical potential difference. The eventual shape of the plate-like double-crystal grain depends on both the initial β and the thermal grooving angle Ψ. For a given β, a critical Ψcexists. When Ψ>Ψc, the eventual shape is one made of two sphere segments with a thermal groove. When Ψ≤Ψc, grain splitting along the grain boundary occurs, and the splitting segments evolve into two spheres, respectively. Both the spheroidization time and the splitting time increase with Ψ and β increasing. The volume shrinkage rate decreases with increasing Ψ.


2003 ◽  
Vol 163 (3) ◽  
pp. 649-659 ◽  
Author(s):  
Oren Dwir ◽  
Ariel Solomon ◽  
Shmuel Mangan ◽  
Geoffrey S. Kansas ◽  
Ulrich S. Schwarz ◽  
...  

L-selectin is a key lectin essential for leukocyte capture and rolling on vessel walls. Functional adhesion of L-selectin requires a minimal threshold of hydrodynamic shear. Using high temporal resolution videomicroscopy, we now report that L-selectin engages its ligands through exceptionally labile adhesive bonds (tethers) even below this shear threshold. These tethers share a lifetime of 4 ms on distinct physiological ligands, two orders of magnitude shorter than the lifetime of the P-selectin–PSGL-1 bond. Below threshold shear, tether duration is not shortened by elevated shear stresses. However, above the shear threshold, selectin tethers undergo 14-fold stabilization by shear-driven leukocyte transport. Notably, the cytoplasmic tail of L-selectin contributes to this stabilization only above the shear threshold. These properties are not shared by P-selectin– or VLA-4–mediated tethers. L-selectin tethers appear adapted to undergo rapid avidity enhancement by cellular transport, a specialized mechanism not used by any other known adhesion receptor.


Biorheology ◽  
2016 ◽  
Vol 52 (5-6) ◽  
pp. 415-432
Author(s):  
Christopher D. Paschall ◽  
Alexander L. Klibanov ◽  
Michael B. Lawrence

2009 ◽  
Vol 320 (1-2) ◽  
pp. 1-15 ◽  
Author(s):  
Ameen Aboel-Hassan ◽  
Mustafa Arafa ◽  
Ashraf Nassef

2004 ◽  
Vol 70 (5) ◽  
Author(s):  
R. Nomura ◽  
S. Kimura ◽  
F. Ogasawara ◽  
H. Abe ◽  
Y. Okuda

Sign in / Sign up

Export Citation Format

Share Document